|   | 
Details
   web
Records
Author Beltran Jimenez, J.; Heisenberg, L.; Olmo, G.J.
Title Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-lnfeld Type Journal Article
Year (up) 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 004 - 26pp
Keywords modified gravity; alternatives to inflation; gravity
Abstract We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.
Address [Jimenez, Jose Beltran] Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, Inst Math & Phys, B-1348 Louvain La Neuve, Belgium, Email: jose.beltran@uclouvain.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000346105300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2039
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Brane-world and loop cosmology from a gravity-matter coupling perspective Type Journal Article
Year (up) 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 740 Issue Pages 73-79
Keywords Modified gravity; Palatini formalism; f(R) theories; Gravity-matter coupling; Quadratic cosmology
Abstract We show that the effective brane-world and the loop quantum cosmology background expansion histories can be reproduced from a modified gravity perspective in terms of an f (R) gravity action plus a g(R) term non-minimally coupled with the matter Lagrangian. The reconstruction algorithm that we provide depends on a free function of the matter density that must be specified in each case and allows to obtain analytical solutions always. In the simplest cases, the function f (R) is quadratic in the Ricci scalar, R, whereas g(R) is linear. Our approach is compared with recent results in the literature. We show that working in the Palatini formalism there is no need to impose any constraint that keeps the equations second order, which is a key requirement for the successful implementation of the reconstruction algorithm.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000347046200013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2099
Permanent link to this record
 

 
Author Bambi, C.; Olmo, G.J.; Rubiera-Garcia, D.
Title Melvin universe in Born-Infeld gravity Type Journal Article
Year (up) 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 10 Pages 104010 - 6pp
Keywords
Abstract We consider a magnetic flux pointing in the z direction of an axially symmetric space-time (Melvin universe) in a Born-Infeld-type extension of general relativity (GR) formulated in the Palatini approach. Large magnetic fields could have been produced in the early Universe, and given rise to interesting phenomenology regarding wormholes and black hole remnants. We find a formal analytic solution to this problem that recovers the GR result in the appropriate limits. Our results set the basis for further extensions that could allow the embedding of pairs of black hole remnants in geometries with intense magnetic fields.
Address [Bambi, Cosimo; Rubiera-Garcia, D.] Fudan Univ, Ctr Field Theory & Particle Phys, Shanghai 200433, Peoples R China, Email: bambi@fudan.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000354368000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2222
Permanent link to this record
 

 
Author Mendoza, S.; Olmo, G.J.
Title Astrophysical constraints and insights on extended relativistic gravity Type Journal Article
Year (up) 2015 Publication Astrophysics and Space Science Abbreviated Journal Astrophys. Space Sci.
Volume 357 Issue 2 Pages 133 - 6pp
Keywords Gravitation; Relativistic processes; Gravitational lensing: weak
Abstract We give precise details to support that observations of gravitational lensing at scales of individual, groups and clusters of galaxies can be understood in terms of nonNewtonian gravitational interactions with a relativistic structure compatible with the Einstein Equivalence Principle. This result is derived on very general grounds without knowing the underlying structure of the gravitational field equations. As such, any developed gravitational theory built to deal with these astrophysical scales needs to reproduce the obtained results of this article.
Address [Mendoza, S.] Univ Nacl Autonoma Mexico, Inst Astron, Mexico City 04510, DF, Mexico, Email: sergio@astro.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-640x ISBN Medium
Area Expedition Conference
Notes WOS:000354392900038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2234
Permanent link to this record
 

 
Author Bazeia, D.; Lobao, A.S.; Losano, L.; Menezes, R.; Olmo, G.J.
Title Braneworld solutions for modified theories of gravity with nonconstant curvature Type Journal Article
Year (up) 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 12 Pages 124006 - 11pp
Keywords
Abstract We study braneworld models in the presence of scalar field in a five-dimensional geometry with a single extra dimension of infinite extent, with gravity modified to include a function of the Ricci scalar. We develop a procedure that allows us to obtain an analytical solution for the braneworld configuration in a diversity of models, in the much harder case where the Ricci scalar is a nonconstant quantity.
Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, PB, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355413300008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2256
Permanent link to this record