|   | 
Details
   web
Records
Author Araujo, M.C.; Furtado, J.; Maluf, R.V.
Title Lorentz-violating extension of scalar QED at finite temperature Type Journal Article
Year (down) 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 844 Issue Pages 138064 - 6pp
Keywords
Abstract In this work, we calculate the one-loop self-energy corrections to the gauge field in scalar electrodynamics modified by Lorentz-violating terms within the framework of the standard model extension (SME). We focus on both CP T-even and CP T-odd contributions. The kinetic part of the scalar sector contains a CP T-even symmetric Lorentz-breaking tensor, and the interaction terms include a vector contracted with the usual covariant derivative in a gauge-invariant manner. We computed the one-loop radiative corrections using dimensional regularization for both the CP T-even and CP T-odd cases. Additionally, we employed the Matsubara formalism to account for finite temperature effects.
Address [Araujo, M. C.; Maluf, R. V.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: michelangelo@fisica.ufc.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001048178600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5617
Permanent link to this record
 

 
Author n_TOF Collaboration (Tarrío, D. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.
Title Neutron-induced fission cross sections of Th-232 and U-233 up to 1 GeV using parallel plate avalanche counters at the CERN n_TOF facility Type Journal Article
Year (down) 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 4 Pages 044616 - 21pp
Keywords
Abstract The neutron-induced fission cross sections of Th-232 and U-233 were measured relative to U-235 in a wide neutron energy range up to 1 GeV (and from fission threshold in the case of Th-232, and from 0.7 eV in case of U-233), using the white-spectrum neutron source at the CERN Neutron Time-of-Flight (nTOF) facility. Parallel plate avalanche counters (PPACs) were used, installed at the Experimental Area 1 (EAR1), which is located at 185 m from the neutron spallation target. The anisotropic emission of fission fragments were taken into account in the detection efficiency by using, in the case of U-233, previous results available in EXFOR, whereas in the case of Th-232 these data were obtained from our measurement, using PPACs and targets tilted 45 degrees with respect to the neutron beam direction. Finally, the obtained results are compared with past measurements and major evaluated nuclear data libraries. Calculations using the high-energy reaction models INCL++ and ABLA07 were performed and some of their parameters were modified to reproduce the experimental results. At high energies, where no other neutron data exist, our results are compared with experimental data on proton-induced fission. Moreover, the dependence of the fission cross section at 1 GeV with the fissility parameter of the target nucleus is studied by combining those ( p, f) data with our (n, f) data on Th-232 and U-233 and on other isotopes studied earlier at nTOF using the same experimental setup.
Address [Tarrio, D.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden, Email: diego.tarrio@physics.uu.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001021341000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5618
Permanent link to this record
 

 
Author Wang, D.
Title Finslerian Universe May Reconcile Tensions Between High and Low Redshift Probes Type Journal Article
Year (down) 2023 Publication International Journal of Theoretical Physics Abbreviated Journal Int. J. Theor. Phys.
Volume 62 Issue 8 Pages 184 - 11pp
Keywords
Abstract To reconcile the current tensions between high and low redshift observations, we perform the first constraints on the Finslerian cosmological models including the effective dark matter and dark energy components. We find that all the four Finslerian models could alleviate effectively the Hubble constant (H-0) tension and the amplitude of the root-mean-square density fluctu-ations (s(8)) tension between the Planck measurements and the local Universe observations at the 68% confidence level. The addition of a massless sterile neutrino and a varying total mass of active neutrinos to the base Finslerian two-parameter model, respectively, reduces the H-0 tension from 3.4s to 1.9s and alleviates the s8 tension better than the other three Finslerian models. Computing the Bayesian evidence, with respect to ACDM model, our analysis shows a weak preference for the base Finslerian model and moderate preferences for its three one-parameter extensions. Based on the model-independent Gaussian Processes, we propose a new linear relation which can describe the current redshift space distortions data very well. Using the most stringent constraints we can provide, we have also obtained the limits of typical model parameters for three one-parameter extensional models.
Address [Wang, Deng] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46980 Paterna, Spain, Email: cstar@nao.cas.cn
Corporate Author Thesis
Publisher Springer/Plenum Publishers Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7748 ISBN Medium
Area Expedition Conference
Notes WOS:001050562500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5619
Permanent link to this record
 

 
Author IDS Collaboration (Heideman, J. et al); Algora, A.; Morales, A.I.
Title Evidence of nonstatistical neutron emission following beta decay near doubly magic Sn-132 Type Journal Article
Year (down) 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 2 Pages 024311 - 9pp
Keywords
Abstract Models of the beta-delayed neutron emission (beta n) assume that neutrons are emitted statistically via an intermediate compound nucleus post beta decay. Evidence to the contrary was found in an In-134 beta-decay experiment carried out at ISOLDE CERN. Neutron emission probabilities from the unbound states in Sn-134 to known low-lying, single-particle states in Sn-133 were measured. The neutron energies were determined using the time-of-flight technique, and the subsequent decay of excited states in Sn-133 was studied using gamma-ray detectors. Individual beta n probabilities were determined by correlating the relative intensities and energies of neutrons and gamma rays. The experimental data disagree with the predictions of representative statistical models which are based upon the compound nucleus postulate. Our results suggest that violation of the compound nucleus assumption may occur in beta-delayed neutron emission. This impacts the neutron-emission probabilities and other properties of nuclei participating in the r-process. A model of neutron emission, which links the observed neutron emission probabilities to nuclear shell effects, is proposed.
Address [Heideman, J.; Grzywacz, R.; Xu, Z. Y.; Madurga, M.; Halverson, C.; King, T. T.; Singh, M.; Yokoyama, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001053419100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5620
Permanent link to this record
 

 
Author Beltran, R.; Cepedello, R.; Hirsch, M.
Title Tree-level UV completions for NRSMEFT d=6 and d=7 operators Type Journal Article
Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 31pp
Keywords Baryon/Lepton Number Violation; SMEFT; Sterile or Heavy Neutrinos
Abstract We study ultra-violet completions for operators in standard model effective field theory extended with right-handed neutrinos (NRSMEFT). Using a diagrammatic method, we generate systematically lists of possible tree-level completions involving scalars, fermions or vectors for all operators at d = 6 and d = 7, which contain at least one right-handed neutrino. We compare our lists of possible UV models to the ones found for pure SMEFT. We also discuss how the observation of LNV processes via NRSMEFT operators at the LHC can be related to Majorana neutrino masses of the standard model neutrinos.
Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: rebeca.beltran@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001054461600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5625
Permanent link to this record
 

 
Author Moreira, A.R.P.; Belchior, F.M.; Maluf, R.V.; Almeida, C.A.S.
Title Bulk fields localization on thick string-like brane in f(T) gravity Type Journal Article
Year (down) 2023 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 138 Issue 8 Pages 730 - 15pp
Keywords
Abstract This paper aims to investigate the influence of torsion on bulk fields in the codimension two thick brane in f(T) modified teleparallel gravity. It is shown that the brane supports the localization of gauge field zero mode without an extra coupling. However, Kalb-Ramond and fermionic fields require a suitable coupling. Then, it is proposed a geometrical coupling based on results in 5D thick brane in modified teleparallel gravities. The Kalb-Ramond field is coupled to torsion scalar T through a gauge-invariant interaction. For the case of fermionic fields, we study the Dirac fermions and gravitino with a derivative geometrical coupling. For all of the fields, it obtained massive and resonant modes by employing the Schodinger-like approach.
Address [Moreira, A. R. P.; Belchior, F. M.; Maluf, R. V.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, CP 6030,Campus Pici, BR-60455760 Fortaleza, CE, Brazil, Email: carlos@fisica.ufc.br
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:001052796100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5621
Permanent link to this record
 

 
Author Natochii, A. et al; Marinas, C.
Title Measured and projected beam backgrounds in the Belle II experiment at the SuperKEKB collider Type Journal Article
Year (down) 2023 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1055 Issue Pages 168550 - 21pp
Keywords Detector background; Lepton collider; Monte-Carlo simulation
Abstract The Belle II experiment at the SuperKEKB electron-positron collider aims to collect an unprecedented data set of 50 ab-1 to study CP-violation in the B-meson system and to search for Physics beyond the Standard Model. SuperKEKB is already the world's highest-luminosity collider. In order to collect the planned data set within approximately one decade, the target is to reach a peak luminosity of 6 x 1035 cm-2 s-1by further increasing the beam currents and reducing the beam size at the interaction point by squeezing the betatron function down to betay* = 0.3 mm. To ensure detector longevity and maintain good reconstruction performance, beam backgrounds must remain well controlled. We report on current background rates in Belle II and compare these against simulation. We find that a number of recent refinements have significantly improved the background simulation accuracy. Finally, we estimate the safety margins going forward. We predict that backgrounds should remain high but acceptable until a luminosity of at least 2.8 x 1035 cm-2 s-1is reached for betay* = 0.6 mm. At this point, the most vulnerable Belle II detectors, the Time-of-Propagation (TOP) particle identification system and the Central Drift Chamber (CDC), have predicted background hit rates from single-beam and luminosity backgrounds that add up to approximately half of the maximum acceptable rates.
Address [Natochii, A.; Browder, T. E.; Schueler, J.; Vahsen, S. E.] Univ Hawaii, Honolulu, HI 96822 USA, Email: natochii@hawaii.edu;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001056103200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5626
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.; Schwetz, T.
Title Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
Year (down) 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 40 Issue Pages 101226 - 8pp
Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses
Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.
Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001042929800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5623
Permanent link to this record
 

 
Author Bombacigno, F.; Moretti, F.; Boudet, S.; Olmo, G.J.
Title Landau damping for gravitational waves in parity-violating theories Type Journal Article
Year (down) 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 009 - 29pp
Keywords Gravitational waves in GR and beyond: theory; modified gravity; gravitational waves / experiments; dark matter experiments
Abstract We discuss how tensor polarizations of gravitational waves can suffer Landau damping in the presence of velocity birefringence, when parity symmetry is explicitly broken. In particular, we analyze the role of the Nieh-Yan and Chern-Simons terms in modified theories of gravity, showing how the gravitational perturbation in collisionless media can be characterized by a subluminal phase velocity, circumventing the well-known results of General Relativity and allowing for the appearance of the kinematic damping. We investigate in detail the connection between the thermodynamic properties of the medium, such as temperature and mass of the particles interacting with the gravitational wave, and the parameters ruling the parity violating terms of the models. In this respect, we outline how the dispersion relations can give rise in each model to different regions of the wavenumber space, where the phase velocity is subluminal, superluminal or does not exist. Quantitative estimates on the considered models indicate that the phenomenon of Landau damping is not detectable given the sensitivity of present-day instruments.
Address [Bombacigno, F.; Moretti, F.; Olmo, Gonzalo J.] Ctr Mixto Univ Valencia, CSIC, Dept Fis Teor, Carrer Doctor Moliner 50, Valencia 46100, Spain, Email: flavio2.bombacigno@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001040875600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5624
Permanent link to this record
 

 
Author Fanchiotti, H.; Garcia Canal, C.A.; Mayosky, M.; Veiga, A.; Vento, V.
Title The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems Type Journal Article
Year (down) 2023 Publication Brazilian Journal of Physics Abbreviated Journal Braz. J. Phys.
Volume 53 Issue 6 Pages 143 - 11pp
Keywords Geometrical phases; Decomplexification; Resonat circuit; Gyrator
Abstract The decomplexification procedure allows one to show mathematically (stricto sensu) the equivalence (isomorphism) between the quantum dynamics of a system with a finite number of basis states and a classical dynamics system. This unique way of connecting different dynamics was used in the past to analyze the relationship between the well-known geometric phase present in the quantum evolution discovered by Berry and its generalizations, with their analogs, the Hannay phases, in the classical domain. In here, this analysis is carried out for several quantum hermitian and non-hermitian PT-symmetric Hamiltonians and compared with the Hannay phase analysis in their classical isomorphic equivalent systems. As the equivalence ends in the classical domain with oscillator dynamics, we exploit the analogy to propose resonant electric circuits coupled with a gyrator, to reproduce the geometric phase coming from the theoretical solutions, in simulated laboratory experiments.
Address [Fanchiotti, H.; Canal, C. A. Garcia] Univ Nacl La Plata, FLP CONICET, RA-1900 La Plata, Argentina, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0103-9733 ISBN Medium
Area Expedition Conference
Notes WOS:001058597300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5627
Permanent link to this record