toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Blennow, M.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J.; Marcano, X.; Naredo-Tuero, D. url  doi
openurl 
  Title Bounds on lepton non-unitarity and heavy neutrino mixing Type Journal Article
  Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 030 - 41pp  
  Keywords Electroweak Precision Physics; Neutrino Mixing; Sterile or Heavy Neutrinos  
  Abstract We present an updated and improved global fit analysis of current flavour and electroweak precision observables to derive bounds on unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos with the active flavours. This new analysis is motivated by new and updated experimental results on key observables such as V-ud, the invisible decay width of the Z boson and the W boson mass. It also improves upon previous studies by considering the full correlations among the different observables and explicitly calibrating the test statistic, which may present significant deviations from a & chi;(2) distribution. The results are provided for three different Type-I seesaw scenarios: the minimal scenario with only two additional right-handed neutrinos, the next to minimal one with three extra neutrinos, and the most general one with an arbitrary number of heavy neutrinos that we parametrise via a generic deviation from a unitary leptonic mixing matrix. Additionally, we also analyze the case of generic deviations from unitarity of the leptonic mixing matrix, not necessarily induced by the presence of additional neutrinos. This last case relaxes some correlations among the parameters and is able to provide a better fit to the data. Nevertheless, inducing only leptonic unitarity deviations avoiding both the correlations implied by the right-handed neutrino extension as well as more strongly constrained operators is challenging and would imply significantly more complex UV completions.  
  Address [Blennow, Mattias] KTH Royal Inst Technol, AlbaNova Univ Ctr, Sch Engn Sci, Dept Phys, Roslagstullsbacken 21, S-10691 Stockholm, Sweden, Email: emb@kth.se;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044930400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5607  
Permanent link to this record
 

 
Author Sandner, S.; Escudero, M.; Witte, S.J. url  doi
openurl 
  Title Precision CMB constraints on eV-scale bosons coupled to neutrinos Type Journal Article
  Year (down) 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 8 Pages 709 - 12pp  
  Keywords  
  Abstract The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalizewith neutrinos via the inverse decay process, v (v) over bar -> X, and suppress neutrino free streaming near recombination – even for couplings as small as lambda(v) similar to O(10(-13)). Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either N-int = 1, 2 or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivatedmodels, such as the singlet majoron model or a light U(1) L-mu- L-t gauge boson, and find that they represent the leading constraints for masses m(X) similar to 1 eV. Finally, we revisit the extent to which neutrinophilic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.  
  Address [Sandner, Stefan] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001045200700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5608  
Permanent link to this record
 

 
Author Fernandez-Martinez, E.; Lopez-Pavon, J.; No, J.M.; Ota, T.; Rosauro-Alcaraz, S. url  doi
openurl 
  Title nu Electroweak baryogenesis: the scalar singlet strikes back Type Journal Article
  Year (down) 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 8 Pages 715 - 23pp  
  Keywords  
  Abstract We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.  
  Address [Fernandez-Martinez, E.; No, J. M.; Ota, T.] Univ Autonoma Madrid, CSIC, Dept Fis Teor, IFT UAM, Madrid 28049, Spain, Email: rosauro@ijclab.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001045200700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5609  
Permanent link to this record
 

 
Author Khosa, C.K.; Sanz, V. url  doi
openurl 
  Title Anomaly Awareness Type Journal Article
  Year (down) 2023 Publication Scipost Physics Abbreviated Journal SciPost Phys.  
  Volume 15 Issue 2 Pages 053 - 24pp  
  Keywords  
  Abstract We present a new algorithm for anomaly detection called Anomaly Awareness. The algorithm learns about normal events while being made aware of the anomalies through a modification of the cost function. We show how this method works in different Particle Physics situations and in standard Computer Vision tasks. For example, we apply the method to images from a Fat Jet topology generated by Standard Model Top and QCD events, and test it against an array of new physics scenarios, including Higgs production with EFT effects and resonances decaying into two, three or four subjets. We find that the algorithm is effective identifying anomalies not seen before, and becomes robust as we make it aware of a varied-enough set of anomalies.  
  Address [Khosa, Charanjit K.] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, England  
  Corporate Author Thesis  
  Publisher Scipost Foundation Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4653 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001048488200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5610  
Permanent link to this record
 

 
Author Garcia-Barcelo, J.M.; Melcon, A.A.; Diaz-Morcillo, A.; Gimeno, B.; Lozano-Guerrero, A.J.; Monzi-Cabrera, J.; Navarro-Madrid, J.R.; Navarro, P. url  doi
openurl 
  Title Methods and restrictions to increase the volume of resonant rectangular-section haloscopes for detecting dark matter axions Type Journal Article
  Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 098 - 37pp  
  Keywords Axions and ALPs; Particle Nature of Dark Matter  
  Abstract Haloscopes are resonant cavities that serve as detectors of dark matter axions when they are immersed in a strong static magnetic field. In order to increase the volume and improve space compatibility with dipole or solenoid magnets for axion searches, various haloscope design techniques for rectangular geometries are discussed in this study. The volume limits of two types of haloscopes are explored: those based on single cavities and those based on multicavities. In both cases, possibilities for increasing the volume of long and/or tall structures are presented. For multicavities, 1D geometries are explored to optimise the space in the magnets. Also, 2D and 3D geometries are introduced as a first step in laying the foundations for the development of these kinds of topologies. The results prove the usefulness of the developed methods, evidencing the ample room for improvement in rectangular haloscope designs nowadays. A factor of three orders of magnitude improvement in volume compared with a single cavity based on the WR-90 standard waveguide is obtained with the design of a long and tall single cavity. Similar procedures have been applied for long and tall multicavities. Experimental measurements are shown for prototypes based on tall multicavities and 2D structures, demonstrating the feasibility of using these types of geometries to increase the volume of real haloscopes.  
  Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Monzo-Cabrera, J.; Navarro-Madrid, J. R.; Navarro, P.] Univ Politecn Cartagena, Dept Tecnol Informac & Comun, Pl Hosp 1, Cartagena 30302, Spain, Email: josemaria.garcia@upct.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001050076700002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5611  
Permanent link to this record
 

 
Author Tortajada, S.; Albiol, F.; Caballero, L.; Albiol, A.; Leganes-Nieto, J.L. doi  openurl
  Title A portable geometry-independent tomographic system for gamma-ray, a next generation of nuclear waste characterization Type Journal Article
  Year (down) 2023 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 13 Issue 1 Pages 12284 - 10pp  
  Keywords  
  Abstract One of the main activities of the nuclear industry is the characterisation of radioactive waste based on the detection of gamma radiation. Large volumes of radioactive waste are classified according to their average activity, but often the radioactivity exceeds the maximum allowed by regulators in specific parts of the bulk. In addition, the detection of the radiation is currently based on static detection systems where the geometry of the bulk is fixed and well known. Furthermore, these systems are not portable and depend on the transport of waste to the places where the detection systems are located. However, there are situations where the geometry varies and where moving waste is complex. This is especially true in compromised situations.We present a new model for nuclear waste management based on a portable and geometry-independent tomographic system for three-dimensional image reconstruction for gamma radiation detection. The system relies on a combination of a gamma radiation camera and a visible camera that allows to visualise radioactivity using augmented reality and artificial computer vision techniques. This novel tomographic system has the potential to be a disruptive innovation in the nuclear industry for nuclear waste management.  
  Address [Tortajada, Salvador; Albiol, Francisco; Caballero, Luis] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna Valencia, Spain, Email: s.tortajada@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001041587900052 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5612  
Permanent link to this record
 

 
Author Araujo Filho, A.A. url  doi
openurl 
  Title Thermodynamics of massless particles in curved spacetime Type Journal Article
  Year (down) 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 12 Issue 13 Pages 2350226 - 40pp  
  Keywords Einstein-aether; thermodynamic properties; curved spacetime  
  Abstract This work is devoted to study the behavior of massless particles within the context of curved spacetime. In essence, we investigate the consequences of the scale factor C(?) of the Friedmann-Robertson-Walker metric in the Einstein-aether formalism to study photon-like particles. To do so, we consider the system within the canonical ensemble formalism in order to derive the following thermodynamic state quantities: spectral radiance, Helmholtz free energy, pressure, entropy, mean energy and the heat capacity. Moreover, the correction to the Stefan-Boltzmann law and the equation of states are also provided. Particularly, we separate our study within three distinct cases, i.e. s = 0, p = 0; s = 1, p = 1; s = 2, p = 1. In the first one, the results are derived numerically. Nevertheless, for the rest of the cases, all the calculations are accomplished analytically showing explicitly the dependence of the scale factor C(?) and the Riemann zeta function ?(s). Furthermore, our analyses are accomplished in general taking into account three different regimes of temperature of the universe, i.e. the inflationary era (T = 10(13)GeV), the electroweak epoch (T = 10(3)GeV) and the cosmic microwave background (T = 10(-13)GeV).  
  Address [Araujo Filho, A. A.] Univ Fed Cearra UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001048378900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5613  
Permanent link to this record
 

 
Author Portillo-Sanchez, D.; Escribano, P.; Vicente, A. url  doi
openurl 
  Title Ultraviolet extensions of the Scotogenic model Type Journal Article
  Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 023 - 35pp  
  Keywords Baryon; Lepton Number Violation; Specific BSM Phenomenology; New Light Particles; Particle Nature of Dark Matter  
  Abstract The Scotogenic model is a popular scenario that induces radiative Majorana neutrino masses and includes a weakly-interacting dark matter candidate. We classify all possible ultraviolet extensions of the Scotogenic model in which (i) the dark DOUBLE-STRUCK CAPITAL Z(2) parity emerges at low energies after the spontaneous breaking of a global U(1)(L) lepton number symmetry, and (ii) the low-energy effective theory contains a naturally small lepton number breaking parameter, suppressed by the mass of a heavy mediator integrated out at tree-level. We find 50 such models and discuss two of them in detail to illustrate our setup. We also discuss some general aspects of the phenomenology of the models in our classification, exploring possible lepton flavor violating signals, collider signatures and implications for dark matter. The phenomenological prospects of these scenarios are very rich due to the presence of additional scalar states, including a massless Goldstone boson.  
  Address [Portillo-Sanchez, Diego] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Ave Inst Politecn Nacl 2508, Mexico City E-07360, Mexico, Email: pablo.escribano@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001044764300006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5614  
Permanent link to this record
 

 
Author Fischer, O.; Pattnaik, B.; Zurita, J. url  doi
openurl 
  Title Testing Heavy Neutral Leptons in Cosmic Ray Beam Dump experiments Type Journal Article
  Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 193 - 24pp  
  Keywords Cosmic Rays; Sterile or Heavy Neutrinos; New Light Particles  
  Abstract In this work, we discuss the possibility to test Heavy Neutral Leptons (HNLs) using “Cosmic Ray Beam Dump” experiments. In analogy with terrestrial beam dump experiments, where a beam first hits a target and is then absorbed by a shield, we consider high-energy incident cosmic rays impinging on the Earth's atmosphere and then the Earth's surface. We focus here on HNL production from atmospherically produced kaon, pion and D-meson decays, and discuss the possible explanation of the appearing Cherenkov showers observed by the SHALON Cherenkov telescope and the ultra-high energy events detected by the neutrino experiment ANITA. We show that these observations can not be explained with a long-lived HNL, as the relevant parameter space is excluded by existing constraints. Then we propose two new experimental setups that are inspired by these experiments, namely a Cherenkov telescope pointing at a sub-horizontal angle and shielded by the mountain cliff at Mount Thor, and a geostationary satellite that observes part of the Sahara desert. We show that the Cherenkov telescope at Mount Thor can probe currently untested HNL parameter space for masses below the kaon mass. We also show that the geostationary satellite experiment can significantly increase the HNL parameter space coverage in the whole mass range from 10 MeV up to 2 GeV and test neutrino mixing |U-& alpha;4|(2) down to 10(-11) for masses around 300 MeV.  
  Address [Fischer, Oliver] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, England, Email: Oliver.Fischer@liverpool.ac.uk;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001037689200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5615  
Permanent link to this record
 

 
Author Brzezinski, K. et al doi  openurl
  Title Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study Type Journal Article
  Year (down) 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 68 Issue 14 Pages 145016 - 17pp  
  Keywords proton therapy; positron emission tomography; in vivo range verification; J-PET; Monte Carlo  
  Abstract Objective. The Jagiellonian positron emission tomography (J-PET) technology, based on plastic scintillators, has been proposed as a cost effective tool for detecting range deviations during proton therapy. This study investigates the feasibility of using J-PET for range monitoring by means of a detailed Monte Carlo simulation study of 95 patients who underwent proton therapy at the Cyclotron Centre Bronowice (CCB) in Krakow, Poland. Approach. Discrepancies between prescribed and delivered treatments were artificially introduced in the simulations by means of shifts in patient positioning and in the Hounsfield unit to the relative proton stopping power calibration curve. A dual-layer, cylindrical J-PET geometry was simulated in an in-room monitoring scenario and a triple-layer, dual-head geometry in an in-beam protocol. The distribution of range shifts in reconstructed PET activity was visualized in the beam's eye view. Linear prediction models were constructed from all patients in the cohort, using the mean shift in reconstructed PET activity as a predictor of the mean proton range deviation. Main results. Maps of deviations in the range of reconstructed PET distributions showed agreement with those of deviations in dose range in most patients. The linear prediction model showed a good fit, with coefficient of determination r (2) = 0.84 (in-room) and 0.75 (in-beam). Residual standard error was below 1 mm: 0.33 mm (in-room) and 0.23 mm (in-beam). Significance. The precision of the proposed prediction models shows the sensitivity of the proposed J-PET scanners to shifts in proton range for a wide range of clinical treatment plans. Furthermore, it motivates the use of such models as a tool for predicting proton range deviations and opens up new prospects for investigations into the use of intra-treatment PET images for predicting clinical metrics that aid in the assessment of the quality of delivered treatment.  
  Address [Brzezinski, Karol; Gajewski, Jan; Kopec, Renata; Olko, Pawel; Stasica, Paulina; Rucinski, Antoni] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland, Email: karol.brzezinski@ific.uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001026535700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5616  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva