toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Belchior, F.M.; Moreira, A.R.P.; Maluf, R.V.; Almeida, C.A.S. url  doi
openurl 
  Title Localization of abelian gauge fields with Stueckelberg-like geometrical coupling on f(T, B)-thick brane Type Journal Article
  Year (down) 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 5 Pages 388 - 14pp  
  Keywords  
  Abstract In the context of f (T, B) modified teleparallel gravity, we investigate the influence of torsion scalar T and boundary term B on the confinement of both the gauge vector and Kalb-Ramond fields. Both fields require a suitable coupling in five-dimensional braneworld scenarios to yield a normalizable zero mode. We propose a Stueckelberg-like geometrical coupling that non-minimally couples the fields to the torsion scalar and boundary term. To set up our braneworld models, we use the first-order formalism in which two kinds of superpotential are taken: sine-Gordon and f(4)-deformed. The geometrical coupling is used to produce a localized zero mode. Moreover, we analyze the massive spectrum for both fields and obtain possible resonant massive modes. Furthermore, we do not find tachyonic modes leading to a consistent thick brane.  
  Address [Belchior, F. M.; Moreira, A. R. P.; Maluf, R. V.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: belchior@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986592700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5547  
Permanent link to this record
 

 
Author Mongillo, M.; Abdullahi, A.; Banto Oberhauser, B.; Crivelli, P.; Hostert, M.; Massaro, D.; Molina Bueno, L.; Pascoli, S. url  doi
openurl 
  Title Constraining light thermal inelastic dark matter with NA64 Type Journal Article
  Year (down) 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 5 Pages 391 - 14pp  
  Keywords  
  Abstract A vector portal between the Standard Model and the dark sector is a predictive and compelling framework for thermal dark matter. Through co-annihilations, models of inelastic dark matter (iDM) and inelastic Dirac dark matter (i2DM) can reproduce the observed relic density in the MeV to GeV mass range without violating cosmological limits. In these scenarios, the vector mediator behaves like a semi-visible particle, evading traditional bounds on visible or invisible resonances, and uncovering new parameter space to explain the muon (g – 2) anomaly. By means of a more inclusive signal definition at the NA64 experiment, we place new constraints on iDM and i2DM using a missing energy technique. With a recast-based analysis, we contextualize the NA64 exclusion limits in parameter space and estimate the reach of the newly collected and expected future NA64 data. Our results motivate the development of an optimized search program for semi-visible particles, in which fixed target experiments like NA64 provide a powerful probe in the sub-GeV mass range.  
  Address [Mongillo, Martina; Oberhauser, Benjamin Banto; Crivelli, Paolo] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: mmongillo@phys.ethz.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000986592700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5548  
Permanent link to this record
 

 
Author Cole, P.S.; Bertone, G.; Coogan, A.; Gaggero, D.; Karydas, T.; Kavanagh, B.J.; Spieksma, T.F.M.; Tomaselli, G.M. url  doi
openurl 
  Title Distinguishing environmental effects on binary black hole gravitational waveforms Type Journal Article
  Year (down) 2023 Publication Nature Astronomy Abbreviated Journal Nat. Astron.  
  Volume 7 Issue 8 Pages 943-950  
  Keywords  
  Abstract A Bayesian approach to comparing the effects of accretion disks, dark matter or clouds of ultra-light bosons on gravitational waveforms from a black hole binary system concludes that detectors such as LISA can distinguish between these environments. Future gravitational wave interferometers such as the Laser Interferometer Space Antenna, Taiji, DECi-hertz Interferometer Gravitational wave Observatory and TianQin will enable precision studies of the environment surrounding black holes. These detectors will probe the millihertz frequency range, as yet unexplored by current gravitational wave detectors. Furthermore, sources will remain in band for durations of up to years, meaning that the inspiral phase of the gravitational wave signal, which can be affected by the environment, will be observable. In this paper, we study intermediate and extreme mass ratio binary black hole inspirals, and consider three possible environments surrounding the primary black hole: accretion disks, dark matter spikes and clouds of ultra-light scalar fields, also known as gravitational atoms. We present a Bayesian analysis of the detectability and measurability of these three environments. Focusing for concreteness on the case of a detection with LISA, we show that the characteristic imprint they leave on the gravitational waveform would allow us to identify the environment that generated the signal and to accurately reconstruct its model parameters.  
  Address [Cole, Philippa S.; Bertone, Gianfranco; Karydas, Theophanes; Spieksma, Thomas F. M.; Tomaselli, Giovanni Maria] Univ Amsterdam, Inst Theoret Phys Amsterdam, Gravitat Astroparticle Phys Amsterdam GRAPPA, Amsterdam, Netherlands, Email: p.s.cole@uva.nl  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3366 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001000769700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5546  
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M.; Monsalvez-Pozo, K. url  doi
openurl 
  Title EFT analysis of New Physics at COHERENT Type Journal Article
  Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 074 - 53pp  
  Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Interactions; SMEFT  
  Abstract Using an effective field theory approach, we study coherent neutrino scattering on nuclei, in the setup pertinent to the COHERENT experiment. We include non-standard effects both in neutrino production and detection, with an arbitrary flavor structure, with all leading Wilson coefficients simultaneously present, and without assuming factorization in flux times cross section. A concise description of the COHERENT event rate is obtained by introducing three generalized weak charges, which can be associated (in a certain sense) to the production and scattering of nu(e), nu(mu) and (nu) over bar (mu) on the nuclear target. Our results are presented in a convenient form that can be trivially applied to specific New Physics scenarios. In particular, we find that existing COHERENT measurements provide percent level constraints on two combinations of Wilson coefficients. These constraints have a visible impact on the global SMEFT fit, even in the constrained flavor-blind setup. The improvement, which affects certain 4-fermion LLQQ operators, is significantly more important in a flavor-general SMEFT. Our work shows that COHERENT data should be included in electroweak precision studies from now on.  
  Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin; Monsalvez-Pozo, Kevin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988320800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5549  
Permanent link to this record
 

 
Author Herrero-Garcia, J.; Landini, G.; Vatsyayan, D. url  doi
openurl 
  Title Asymmetries in extended dark sectors: a cogenesis scenario Type Journal Article
  Year (down) 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 049 - 41pp  
  Keywords Models for Dark Matter; Particle Nature of Dark Matter  
  Abstract The observed dark matter relic abundance may be explained by different mechanisms, such as thermal freeze-out/freeze-in, with one or more symmetric/asymmetric components. In this work we investigate the role played by asymmetries in determining the yield and nature of dark matter in non-minimal scenarios with more than one dark matter particle. In particular, we show that the energy density of a particle may come from an asymmetry, even if the particle is asymptotically symmetric by nature. To illustrate the different effects of asymmetries, we adopt a model with two dark matter components. We embed it in a multi-component cogenesis scenario that is also able to reproduce neutrino masses and the baryon asymmetry. In some cases, the model predicts an interesting monochromatic neutrino line that may be searched for at neutrino telescopes.  
  Address [Herrero-Garcia, Juan] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: juan.herrero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988319500002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5550  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva