|   | 
Details
   web
Records
Author PTOLEMY Collaboration (Betti, M.G. et al); Gariazzo, S.; Pastor, S.
Title Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case Type Journal Article
Year (down) 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 047 - 31pp
Keywords cosmological neutrinos; neutrino detectors; particle physics – cosmology connection; physics of the early universe
Abstract The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.
Address [Betti, M. G.; Cavoto, G.; Mancini-Terracciano, C.; Mariani, C.; Polosa, A. D.; Rago, I] Univ Roma La Sapienza, Rome, Italy, Email: pabferde@gmail.com;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000478735300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4097
Permanent link to this record
 

 
Author Stadler, J.; Boehm, C.; Mena, O.
Title Comprehensive study of neutrino-dark matter mixed damping Type Journal Article
Year (down) 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 014 - 23pp
Keywords CMBR theory; cosmological perturbation theory; neutrino properties; power spectrum
Abstract Mixed damping is a physical effect that occurs when a heavy species is coupled to a relativistic fluid which is itself free streaming. As a cross-case between collisional damping and free-streaming, it is crucial in the context of neutrino-dark matter interactions. In this work, we establish the parameter space relevant for mixed damping, and we derive an analytical approximation for the evolution of dark matter perturbations in the mixed damping regime to illustrate the physical processes responsible for the suppression of cosmological perturbations. Although extended Boltzmann codes implementing neutrino-dark matter scattering terms automatically include mixed damping, this effect has not been systematically studied. In order to obtain reliable numerical results, it is mandatory to reconsider several aspects of neutrino-dark matter interactions, such as the initial conditions, the ultra-relativistic fluid approximation and high order multiple moments in the neutrino distribution. Such a precise treatment ensures the correct assessment of the relevance of mixed damping in neutrino-dark matter interactions.
Address [Stadler, Julia] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: julia.j.stadler@durham.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000481534700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4111
Permanent link to this record
 

 
Author Cheng, L.; Eberhardt, O.; Murphy, C.W.
Title Novel theoretical constraints for color-octet scalar models Type Journal Article
Year (down) 2019 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 43 Issue 9 Pages 093101 - 11pp
Keywords beyond the Standard Model; extension of Higgs sector; EW symmetry breaking
Abstract We study the theoretical constraints on a model whose scalar sector contains one color octet and one or two color singlet SU(2)(L) doublets. To ensure unitarity of the theory, we constrain the parameters of the scalar potential for the first time at the next-to-leading order in perturbation theory. Moreover, we derive new conditions guaranteeing the stability of the potential. We employ the HEPfit package to extract viable parameter regions at the electroweak scale and test the stability of the renormalization group evolution up to the multi-TeV region. Furthermore, we set upper limits on the scalar mass splittings. All results are given for both cases with and without a second scalar color singlet.
Address [Cheng, Li] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China, Email: clmamuphy@sina.cn;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000482015900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4115
Permanent link to this record
 

 
Author Alcaide, J.; Banerjee, S.; Chala, M.; Titov, A.
Title Probes of the Standard Model effective field theory extended with a right-handed neutrino Type Journal Article
Year (down) 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 031 - 18pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract If neutrinos are Dirac particles and, as suggested by the so far null LHC results, any new physics lies at energies well above the electroweak scale, the Standard Model effective field theory has to be extended with operators involving the right-handed neutrinos. In this paper, we study this effective field theory and set constraints on the different dimension-six interactions. To that aim, we use LHC searches for associated production of light (and tau) leptons with missing energy, monojet searches, as well as pion and tau decays. Our bounds are generally above the TeV for order one couplings. One particular exception is given by operators involving top quarks. These provide new signals in top decays not yet studied at colliders. Thus, we also design an LHC analysis to explore these signatures in the tt production. Our results are also valid if the right-handed neutrinos are Majorana and long-lived.
Address [Alcaide, Julien] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: julien.alcaide@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000482463900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4120
Permanent link to this record
 

 
Author Reig, M.
Title On the high-scale instanton interference effect: axion models without domain wall problem Type Journal Article
Year (down) 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 167 - 13pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Gauge Symmetry
Abstract We show that a new chiral, confining interaction can be used to break Peccei-Quinn symmetry dynamically and solve the domain wall problem, simultaneously. The resulting theory is an invisible QCD axion model without domain walls. No dangerous heavy relics appear.
Address [Reig, Mario] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: mario.reig@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000483916900002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4137
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed Standard Model Type Journal Article
Year (down) 2019 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 34 Issue 25 Pages 1950140 - 27pp
Keywords Phenomenology beyond the Standard Model; lepton anomalous magnetic; moments Atomki anomaly
Abstract The framed Standard Model (FSM) predicts a 0(+) boson with mass around 20 MeV in the “hidden sector,” which mixes at tree level with the standard Higgs hW and hence acquires small couplings to quarks and leptons which can be calculated in the FSM apart from the mixing parameter rho Uh. The exchange of this mixed state U will contribute to g – 2 and to the Lamb shift. By adjusting rho Uh alone, it is found that the FSM can satisfy all present experimental bounds on the g – 2 and Lamb shift anomalies for μand e, and for the latter for both hydrogen and deuterium. The FSM predicts also a 1(-) boson in the “hidden sector” with a mass of 17 MeV, that is, right on top of the Atomki anomaly X. This mixes with the photon at 1-loop level and couples thereby like a dark photon to quarks and leptons. It is however a compound state and is thought likely to possess additional compound couplings to hadrons. By adjusting the mixing parameter and the X's compound coupling to nucleons, the FSM can reproduce the production rate of the X in beryllium decay as well as satisfy all the bounds on X listed so far in the literature. The above two results are consistent in that the U, being 0(+), does not contribute to the Atomki anomaly if parity and angular momentum are conserved, while X, though contributing to g – 2 and Lamb shift, has smaller couplings than U and can, at first instance, be neglected there. Thus, despite the tentative nature of the three anomalies in experiment on the one hand and of the FSM as theory on the other, the accommodation of the former in the latter has strengthened the credibility of both. Indeed, if this FSM interpretation were correct, it would change the whole aspect of the anomalies from just curiosities to windows into a vast hitherto hidden sector comprising at least in part the dark matter which makes up the bulk of our universe.
Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000485680700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4142
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2 Type Journal Article
Year (down) 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P09011 - 35pp
Keywords Gaseous detectors; Muon spectrometers; Particle tracking detectors (Gaseous detectors); Wire chambers (MWPC, Thin-gap chambers, drift chambers, drift tubes, proportional chambers etc)
Abstract The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 +/- 2.2 μm.
Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000486990000011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4149
Permanent link to this record
 

 
Author Ortiz Arciniega, J.L.; Carrio, F.; Valero, A.
Title FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions Type Journal Article
Year (down) 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P09002 - 13pp
Keywords Data processing methods; Pattern recognition; cluster finding; calibration and fitting methods; Simulation methods and programs
Abstract The analog signals generated in the read-out electronics of particle detectors are shaped prior to the digitization in order to improve the signal to noise ratio (SNR). The real amplitude of the analog signal is then obtained using digital filters, which provides information about the energy deposited in the detector. The classical digital filters have a good performance in ideal situations with Gaussian electronic noise and no pulse shape distortion. However, high-energy particle colliders, such as the Large Hadron Collider (LHC) at CERN, can produce multiple simultaneous events, which produce signal pileup. The performance of classical digital filters deteriorates in these conditions since the signal pulse shape gets distorted. In addition, this type of experiments produces a high rate of collisions, which requires high throughput data acquisitions systems. In order to cope with these harsh requirements, new read-out electronics systems are based on high-performance FPGAs, which permit the utilization of more advanced real-time signal reconstruction algorithms. In this paper, a deep learning method is proposed for real-time signal reconstruction in high pileup particle detectors. The performance of the new method has been studied using simulated data and the results are compared with a classical FIR filter method. In particular, the signals and FIR filter used in the ATLAS Tile Calorimeter are used as benchmark. The implementation, resources usage and performance of the proposed Neural Network algorithm in FPGA are also presented.
Address [Ortiz Arciniega, J. L.] Univ Valencia, Avinguda Univ S-N, Burjassot, Spain, Email: orarjo@alumni.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000486990000002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4150
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Yamada, M.
Title Light majoron cold dark matter from topological defects and the formation of boson stars Type Journal Article
Year (down) 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 029 - 25pp
Keywords Cosmic strings; domain walls; monopoles; particle physics – cosmology connection; cosmology of theories beyond the SM; cosmological neutrinos
Abstract We show that for a relatively light majoron (<< 100 eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.
Address [Reig, Mario; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000487690100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4154
Permanent link to this record
 

 
Author Guerrero, C.; Tessler, M.; Paul, M.; Lerendegui-Marco, J.; Heinitz, S.; Maugeri, E.A.; Domingo-Pardo, C.; Dressler, R.; Halfon, S.; Kivel, N.; Koster, U.; Palchan-Hazan, T.; Quesada, J.M.; Schumann, D.; Weissman, L.
Title The s-process in the Nd-Pm-Sm region: Neutron activation of Pm-147 Type Journal Article
Year (down) 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 797 Issue Pages 134809 - 6pp
Keywords Nucleosynthesis; Neutron capture; Nuclear reactions; s-process; MACS; Neutron activation
Abstract The Nd-Pm-Sm branching is of interest for the study of the s-process, related to the production of heavy elements in stars. As Sm-148 and Sm-150 are s-only isotopes, the understanding of the branching allows constraining the s-process neutron density. In this context the key physics input needed is the cross section of the three unstable nuclides in the region: Nd-147 (10.98 d half-life), Pm-147 (2.62 yr) and Pm-148 (5.37 d). This paper reports on the activation measurement of Pm-147, the longest-lived of the three nuclides. The cross section measurement has been carried out by activation at the SARAF LiLiT facility using a 56(2) μg target. Compared to the single previous measurement of Pm-147, the measurement presented herein benefits from a target 2000 times more massive. The resulting Maxwellian Averaged Cross Section (MACS) to the ground and metastable states in Pm-148 are 469(50) mb and 357(27) mb. These values are 41% higher (to the ground state) and 15% lower (to the metastable state) than the values reported so far, leading however to a total cross section of 826(107) mb consistent within uncertainties with the previous result and hence leaving unchanged the previous calculation of the s-process neutron density.
Address [Guerrero, C.; Lerendegui-Marco, J.; Quesada, J. M.] Univ Seville, Seville, Spain, Email: cguerrero4@us.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000488071200026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4161
Permanent link to this record