toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bordes, J.; Chan, H.M.; Tsun, S.S. url  doi
openurl 
  Title A closer study of the framed standard model yielding testable new physics plus a hidden sector with dark matter candidates Type Journal Article
  Year (down) 2018 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 33 Pages 1850195 - 75pp  
  Keywords Gauge field theories; beyond the standard model; composite models; mass and mixing of fermions; dark matter  
  Abstract This closer study of the FSM (1) retains the earlier results of Ref. 1 in offering explanation for the existence of three fermion generations, as well as the hierarchical mass and mixing patterns of leptons and quarks; (II) predicts a vector boson G with mass of order TeV which mixes gamma with and Z of the standard model. The subsequent deviations from the standard mixing scheme are calculable in terms of the G mass. While these deviations for (i) mz – mw, (ii) Gamma(Z -> l (+)l( -)), and (iii) F(Z -> hadrons) are all within present experimental errors so long as mG > 1 TeV, they should soon be detectable if the G mass is not too much bigger; (III) suggests that in parallel to the standard sector familiar to us, there is another where the roles of flavour and colour are interchanged. Though quite as copiously populated and as vibrant in self-interactions as our own, it communicates but little with the standard sector except via mixing through a couple of known portals, one of which is the gamma – Z – G complex noted in (II), and the other is a scalar complex which includes the standard model Higgs. As a result, the new sectors paper. appears hidden to us as we appear hidden to them, and so its lowest members with masses of order 10 MeV, being electrically neutral and seemingly stable, but abundant, may make eligible candidates as constituents of dark matter. A more detailed summary of these results together with some remarks on the model's special theoretical features can be found in the last section of this paper.  
  Address [Bordes, Jose] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453027500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3844  
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study Type Journal Article
  Year (down) 2017 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 19 Issue Pages 093005 - 14pp  
  Keywords neutrino masses and mixings; neutrino oscillations; neutrino interactions  
  Abstract When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.  
  Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000410457100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3292  
Permanent link to this record
 

 
Author Bayar, M.; Debastiani, V.R. url  doi
openurl 
  Title a(0)(980) – f(0)(980) mixing in chi(c1) -> pi(0)f(0)(980) -> pi(0)pi(+)pi(-) and chi(c1) -> pi(0) a(0)(980) -> pi(0)pi(0)eta Type Journal Article
  Year (down) 2017 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 775 Issue Pages 94-99  
  Keywords Isospin-breaking; a(0)(980) – f(0)(980) mixing; Charmonium decays; Scalar meson states  
  Abstract We study the isospin breaking in the reactions chi(c1) -> pi(0)pi(+)pi(-) and chi(c1) -> pi(0)pi(0)eta and its relation to the a(0)(980) – f(0)(980) mixing, which was measured by the BESIII Collaboration. We show that the same theoretical model previously developed to study the chi(c1) -> eta pi(+)pi(-) reaction (also measured by BESIII), and further explored in the predictions to the eta(c) -> eta pi(+)pi(-), can be successfully employed in the present study. We assume that the chi(c1) behaves as an SU(3) singlet to find the weight in which trios of pseudoscalars are created, followed by the final state interaction of pairs of mesons to describe how the a(0)(980) and f(0)(980) are dynamically generated, using the chiral unitary approach in coupled channels. The isospin violation is introduced through the use of different masses for the charged and neutral kaons, either in the propagators of pairs of mesons created in the chi(c1) decay, or in the propagators inside the T matrix, constructed through the unitarization of the scattering and transition amplitudes of pairs of pseudoscalar mesons. We find that violating isospin inside the T matrix makes the pi(0)eta -> pi(+)pi(-) amplitude nonzero, which gives an important contribution and also enhances the effect of the K (K) over bar term. We also find that the most important effect in the total amplitude is the isospin breaking inside the T matrix, due to the constructive sum of pi(0)eta -> pi(+)pi(-) and K (K) over bar -> pi(+)pi(-), which is essential to get a good agreement with the experimental measurement of the mixing.  
  Address [Bayar, M.] Kocaeli Univ, Dept Phys, TR-41380 Izmir, Turkey, Email: melahat.bayar@kocaeli.edu.tr;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000417190700014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3432  
Permanent link to this record
 

 
Author Bonilla, C.; Ma, E.; Peinado, E.; Valle, J.W.F. url  doi
openurl 
  Title Two-loop Dirac neutrino mass and WIMP dark matter Type Journal Article
  Year (down) 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 762 Issue Pages 214-218  
  Keywords Neutrino masses and mixing; Dark matter stability  
  Abstract We propose a “scotogenic” mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diraconthat induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below m(h)/2.  
  Address [Bonillaa, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000388473700029 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2979  
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title A first test of the framed standard model against experiment Type Journal Article
  Year (down) 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 30 Issue 11 Pages 1550051 - 34pp  
  Keywords Higgs boson; fermion generations; mixing and neutrino oscillations; mass hierarchy; vielbeins  
  Abstract The framed standard model (FSM) is obtained from the standard model by incorporating, as field variables, the frame vectors (vielbeins) in internal symmetry space. It gives the standard Higgs boson and 3 generations of quarks and leptons as immediate consequences. It gives moreover a fermion mass matrix of the form: m = mT alpha alpha dagger, where alpha is a vector in generation space independent of the fermion species and rotating with changing scale, which has already been shown to lead, generically, to up-down mixing, neutrino oscillations and mass hierarchy. In this paper, pushing the FSM further, one first derives to 1-loop order the RGE for the rotation of alpha, and then applies it to fit mass and mixing data as a first test of the model. With 7 real adjustable parameters, 18 measured quantities are fitted, most (12) to within experimental error or to better than 0.5 percent, and the rest (6) not far off. (A summary of this fit can be found in Table 2 of this paper.) Two notable features, both generic to FSM, not just specific to the fit, are: (i) that a theta-angle of order unity in the instanton term in QCD would translate via rotation into a Kobayashi-Maskawa phase in the CKM matrix of about the observed magnitude (J similar to 10(-5)), (ii) that it would come out correctly that m(u) < m(d), despite the fact that m(t) >> m(b), m(c) >> m(s). Of the 18 quantities fitted, 12 are deemed independent in the usual formulation of the standard model. In fact, the fit gives a total of 17 independent parameters of the standard model, but 5 of these have not been measured by experiment.  
  Address [Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000352992800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2187  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva