toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Strege, C.; Bertone, G.; Feroz, F.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Global fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints Type Journal Article
  Year (up) 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 013 - 40pp  
  Keywords dark matter theory; supersymmetry and cosmology  
  Abstract We present global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM) and the Non-Universal Higgs Model (NUHM), including the most recent CMS constraint on the Higgs boson mass, 5.8 fb(-1) integrated luminosity null Supersymmetry searches by ATLAS, the new LHCb measurement of B R ((B) over bar (s) -> mu(+) mu(-)) and the 7-year WMAP dark matter relic abundance determination. We include the latest dark matter constraints from the XENON100 experiment, marginalising over astrophysical and particle physics uncertainties. We present Bayesian posterior and profile likelihood maps of the highest resolution available today, obtained from up to 350M points. We find that the new constraint on the Higgs boson mass has a dramatic impact, ruling out large regions of previously favoured cMSSM and NUHM parameter space. In the cMSSM, light sparticles and predominantly gaugino-like dark matter with a mass of a few hundred GeV are favoured. The NUHM exhibits a strong preference for heavier sparticle masses and a Higgsino-like neutralino with a mass of 1 TeV. The future ton-scale XENON1T direct detection experiment will probe large portions of the currently favoured cMSSM and NUHM parameter space. The LHC operating at 14 TeV collision energy will explore the favoured regions in the cMSSM, while most of the regions favoured in the NUHM will remain inaccessible. Our best-fit points achieve a satisfactory quality-of-fit, with p-values ranging from 0.21 to 0.35, so that none of the two models studied can be presently excluded at any meaningful significance level.  
  Address Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000318556200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1445  
Permanent link to this record
 

 
Author Ghosh, P.; Lopez-Fogliani, D.E.; Mitsou, V.A.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title Probing the mu-from-nu supersymmetric standard model with displaced multileptons from the decay of a Higgs boson at the LHC Type Journal Article
  Year (up) 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 88 Issue 1 Pages 015009 - 6pp  
  Keywords  
  Abstract The "mu from nu'' supersymmetric standard model (mu nu SSM) cures the μproblem and concurrently reproduces measured neutrino data by using a set of usual right-handed neutrino superfields. Recently, the LHC has revealed the first scalar boson which naturally makes it tempting to test μnu SSM in the light of this new discovery. We show that this new scalar, while decaying to a pair of unstable long-lived neutralinos, can lead to a distinct signal with nonprompt multileptons. With concomitant collider analysis we show that this signal provides an intriguing signature of the model, pronounced with light neutralinos. Evidence of this signal is well envisaged with sophisticated displaced vertex analysis, which deserves experimental attention.  
  Address [Ghosh, Pradipta; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: pradipta.ghosh@uam.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321671700008 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1505  
Permanent link to this record
 

 
Author Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R. url  doi
openurl 
  Title The health of SUSY after the Higgs discovery and the XENON100 data Type Journal Article
  Year (up) 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 182 - 47pp  
  Keywords Supersymmetry Phenomenology  
  Abstract We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach. This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detect at LHC, this does not necessarily mean that is very fine-tuned. We use Bayesian techniques to show the experimental Higgs mass is at similar to 2 sigma off the CMSSM or NUHM expectation. This is substantial but not dramatic. Although the CMSSM or the NUHM are unlikely to show up at the LHC, they are still interesting and plausible models after the Higgs observation; and, if they are true, the chances of discovering them in future dark matter experiments are quite high.  
  Address [Cabrera, Maria Eugenia] Univ Amsterdam, Inst Theoret Phys, GRAPPA, NL-1012 WX Amsterdam, Netherlands, Email: M.E.CabreraCatalan@uva.nl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000323202900095 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1572  
Permanent link to this record
 

 
Author Ruiz de Austri, R.; Perez de los Heros, C. url  doi
openurl 
  Title Impact of nucleon matrix element uncertainties on the interpretation of direct and indirect dark matter search results Type Journal Article
  Year (up) 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 049 - 19pp  
  Keywords dark matter theory; dark matter experiments; supersymmetry and cosmology  
  Abstract We study in detail the impact of the current uncertainty in nucleon matrix elements on the sensitivity of direct and indirect experimental techniques for dark matter detection. We perform two scans in the framework of the cMSSM: one using recent values of the pion-sigma term obtained from Lattice QCD, and the other using values derived from experimental measurements. The two choices correspond to extreme values quoted in the literature and reflect the current tension between different ways of obtaining information about the structure of the nucleon. All other inputs in the scans, astrophysical and from particle physics, are kept unchanged. We use two experiments, XENON100 and IceCube, as benchmark cases to illustrate our case. We find that the interpretation of dark matter search results from direct detection experiments is more sensitive to the choice of the central values of the hadronic inputs than the results of indirect search experiments. The allowed regions of cMSSM parameter space after including XENON100 constrains strongly differ depending on the assumptions on the hadronic matrix elements used. On the other hand, the constraining potential of IceCube is almost independent of the choice of these values.  
  Address [Ruiz de Austri, R.] IFIC UV CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: rruiz@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327843900050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1674  
Permanent link to this record
 

 
Author TLEP Design Study Working Group (Bicer, M. et al); Ruiz de Austri, R. url  doi
openurl 
  Title First look at the physics case of TLEP Type Journal Article
  Year (up) 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 164 - 49pp  
  Keywords e plus -e- Experiments  
  Abstract The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e(+)e(-) collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.  
  Address [Bicer, M.] Ankara Univ, Fac Sci, TR-06100 Ankara, Turkey, Email: TLEP3-steering-group@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000330992300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1700  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva