|   | 
Details
   web
Records
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title An Algorithm for the Reconstruction of Neutrino-induced Showers in the ANTARES Neutrino Telescope Type Journal Article
Year (down) 2017 Publication Astronomical Journal Abbreviated Journal Astron. J.
Volume 154 Issue 6 Pages 275 - 9pp
Keywords neutrinos; telescopes
Abstract Muons created by nu(mu) charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow for the determination of the parent neutrino direction with a median angular resolution of about 0 degrees.4 for an E-2 neutrino spectrum. In this paper, an algorithm optimized for accurate reconstruction of energy and direction of shower events in the ANTARES detector is presented. Hadronic showers of electrically charged particles are produced by the disintegration of the nucleus both in CC and neutral current interactions of neutrinos in water. In addition, electromagnetic showers result from the CC interactions of electron neutrinos while the decay of a tau lepton produced in nu(tau) CC interactions will, in most cases, lead to either a hadronic or an electromagnetic shower. A shower can be approximated as a point source of photons. With the presented method, the shower position is reconstructed with a precision of about 1 m; the neutrino direction is reconstructed with a median angular resolution between 2 degrees and 3 degrees in the energy range of 1-1000 TeV. In this energy interval, the uncertainty on the reconstructed neutrino energy is about 5%-10%. The increase in the detector sensitivity due to the use of additional information from shower events in the searches for a cosmic neutrino flux is also presented.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit,BP 50568, F-68008 Colmar, France
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6256 ISBN Medium
Area Expedition Conference
Notes WOS:000425438400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3498
Permanent link to this record
 

 
Author Double Chooz collaboration (Abe, Y. et al); Novella, P.
Title Measurement of theta(13) in Double Chooz using neutron captures on hydrogen with novel background rejection techniques Type Journal Article
Year (down) 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 163 - 29pp
Keywords Oscillation; Electroweak interaction; Neutrino Detectors and Telescopes; Flavor physics
Abstract The Double Chooz collaboration presents a measurement of the neutrino mixing angle theta(13) using reactor (nu) over bar (e) observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respect to our previous publication by a multi-variate analysis. These improvements demonstrate the capability of precise measurement of reactor (nu) over bar (e) without gadolinium loading. Spectral distortions from the (nu) over bar (e) reactor flux predictions previously reported with the neutron capture on gadolinium events are confirmed in the independent data sample presented here. A value of sin(2) 2 theta(13) = 0.095(0.039)(+0.039)(stat+syst) is obtained from a fit to the observed event rate as a function of the reactor power, a method insensitive to the energy spectrum shape. A simultaneous fit of the hydrogen capture events and of the gadolinium capture events yields a measurement of sin(2) 2 theta(13) = 0.088 +/- 0.033(stat+syst).
Address [Felde, J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA, Email: amil@nevis.columbia.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000369294300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2543
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Optical and X-ray early follow-up of ANTARES neutrino alerts Type Journal Article
Year (down) 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 062 - 29pp
Keywords gamma ray burst experiments; neutrino astronomy; X-ray telescopes
Abstract High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or Xray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with Xray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.
Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Feis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain, Email: dornic@cppm.in2p3.fr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000372467600063 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2588
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope Type Journal Article
Year (down) 2016 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 78 Issue Pages 43-51
Keywords Time calibration; Neutrino Telescopes; ANTARES; Atmospheric muon tracks
Abstract The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of similar to 10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices.
Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain, Email: javier.barrios@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000374612500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2641
Permanent link to this record
 

 
Author LAGUNA-LBNO Collaboration (Agarwalla, S.K., et al); Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Sorel, M.
Title The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment Type Journal Article
Year (down) 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 094 - 38pp
Keywords Oscillation; Neutrino Detectors and Telescopes; CP violation
Abstract The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from delta(CP) and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5 sigma C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has similar to 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract delta(CP) from the data, the first LBNO phase can convincingly give evidence for CPV on the 3 sigma C.L. using today's knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.
Address [Banerjee, D.; Bay, F.; Cantini, C.; Crivelli, P.; Di Luise, S.; Epprecht, L.; Gendotti, A.; Horikawa, S.; Murphy, S.; Nguyen, K.; Nikolics, K.; Periale, L.; Resnati, F.; Rubbia, A.; Sergiampietri, F.; Sgalaberna, D.; Viant, T.; Wu, S.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland, Email: andre.rubbia@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000337086700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1821
Permanent link to this record