|   | 
Details
   web
Records
Author Alvarez-Ortega, D.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title Eternal versus singular observers in interacting dark-energy-dark-matter models Type Journal Article
Year (down) 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 2 Pages 023523 - 14pp
Keywords
Abstract Interacting dark-energy-dark-matter models have been widely analyzed in the literature in an attempt to find traces of new physics beyond the usual cosmological (Lambda CDM) models. Such a coupling between both dark components is usually introduced in a phenomenological way through a flux in the continuity equation. However, models with a Lagrangian formulation are also possible. A class of the latter assumes a conformal/disformal coupling that leads to a fifth force on the dark-matter component, which consequently does not follow the same geodesics as the other (baryonic, radiation, and dark-energy) matter sources. Here we analyze how the usual cosmological singularities of the standard matter frame are seen from the dark-matter one, concluding that by choosing an appropriate coupling, dark-matter observers will see no singularities but a non beginning, non ending universe. By considering two simple phenomenological models we show that such a type of coupling can fit observational data as well as the usual Lambda CDM model.
Address [Alvarez-Ortega, Diego] Inst Fis Cantabria CSIC UC, Avda Castros S-N, Santander 39005, Spain, Email: diego.alvarezo@alumnos.unican.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000842768300012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5345
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Some recent results on Ricci-based gravity theories Type Journal Article
Year (down) 2022 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 31 Issue Pages 2240012 - 15pp
Keywords Metric-affine gravity; scalar fields; stellar models; junction conditions; compact objects
Abstract In this paper, metric-afline theories in which the gravity Lagrangian is built using (projectively invariant) contractions of the Ricci tensor with itself and with the metric (Ricci-based gravity theories, or RBGs for short) are reviewed. The goal is to provide a contextualized and coherent presentation of some recent results. In particular, we focus on the correspondence that exists between the field equations of these theories and those of general relativity, and comment on how this can be used to build new solutions of physical interest. We also discuss the formalism of junction conditions in the f (R) case, and provide a brief summary on current experimental and observational bounds on model parameters.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000848888900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5350
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title Multiring images of thin accretion disk of a regular naked compact object Type Journal Article
Year (down) 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 4 Pages 044070 - 13pp
Keywords
Abstract We discuss the importance of multiring images in the optical appearance of a horizonless spherically symmetric compact object, when illuminated by an optically thin accretion disk. Such an object corresponds to a subcase of an analytically tractable extension of the Kerr solution dubbed as the “eye of the storm” by Simpson and Visser in [J. Cosmol. Astropart. Phys. 03 (2022) 011], which merits in removing curvature singularities via an asymptotically Minkowski core, while harboring both a critical curve and an infinite potential barrier at the center for null geodesics. This multiring structure is induced by light rays winding several times around the object, and whose luminosity is significantly boosted as compared to the Schwarzschild solution by the modified shape of the potential. Using three toy profiles for the emission of an infinitely thin disk, truncated at its inner edge (taking its maximum value there) and having different decays with the distance, we discuss the image created by up to eight rings superimposed on top of the direct emission of the disk as its edge is moved closer to the center of the object. Our results point to the existence of multiring images with a non-negligible luminosity in shadow observations when one allows for the existence of other compact objects in the cosmic zoo beyond the Schwarzschild solution. Such multiring images could be detectable within the future projects on very long baseline interferometry.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, IPARCOS, Madrid 28040, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000850772800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5352
Permanent link to this record
 

 
Author Olmo, G.J.; Orazi, E.; Pradisi, G.
Title Conformal metric-affine gravities Type Journal Article
Year (down) 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 057 - 21pp
Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; modified gravity
Abstract We revisit the gauge symmetry related to integrable projective transformations in metric-affine formalism, identifying the gauge field of the Weyl (conformal) symmetry as a dynamical component of the affine connection. In particular, we show how to include the local scaling symmetry as a gauge symmetry of a large class of geometric gravity theories, introducing a compensator dilaton field that naturally gives rise to a Stuckelberg sector where a spontaneous breaking mechanism of the conformal symmetry is at work to generate a mass scale for the gauge field. For Ricci-based gravities that include, among others, General Relativity, f(R) and f(R, R μnu R μnu) theories and the EiBI model, we prove that the on-shell gauge vector associated to the scaling symmetry can be identified with the torsion vector, thus recovering and generalizing conformal invariant theories in the Riemann-Cartan formalism, already present in the literature.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, Dept Fis Teor, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000878259300018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5405
Permanent link to this record
 

 
Author Silva, J.E.G.; Maluf, R.V.; Olmo, G.J.; Almeida, C.A.S.
Title Braneworlds in f(Q) gravity Type Journal Article
Year (down) 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 2 Pages 024033 - 15pp
Keywords
Abstract We propose a braneworld scenario in a modified symmetric teleparallel gravitational theory, where the dynamics for the gravitational field is encoded in the nonmetricity tensor rather than in the curvature. Assuming a single real scalar field with a sine-Gordon self-interaction, the generalized quadratic nonmetricity invariant Q controls the brane width while keeping the shape of the energy density. By considering power corrections of the invariant Q in the gravitational Lagrangian, the sine-Gordon potential is modified exhibiting new barriers and false vacuum. As a result, the domain wall brane obtains an inner structure, and it undergoes a splitting process. In addition, we also propose a nonminimal coupling between a bulk fermion field and the nonmetricity invariant Q. Such geometric coupling leads to a massless chiral fermion bound to the 3-brane and a stable tower of nonlocalized massive states.
Address [Silva, J. E. G.] Univ Fed do Cariri UFCA, Ave Tenente Raimundo Rocha,Cidade Universitaria, BR-63048080 Juazeiro do Norte, CE, Brazil, Email: euclides.silva@ufca.edu.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000880673200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5410
Permanent link to this record
 

 
Author Delhom, A.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J.
Title Metric-affine bumblebee gravity: classical aspects Type Journal Article
Year (down) 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 4 Pages 287 - 10pp
Keywords
Abstract We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the post-Minkowskian, weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric, and then we explore the physical properties of the VEV of the bumblebee field, focusing mainly on the dispersion relations and the stability of the resulting effective theory.
Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia, CSIC, Valencia 46100, Spain, Email: adria.delhom@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000636839400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4779
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.
Title Double shadows of reflection-asymmetric wormholes supported by positive energy thin-shells Type Journal Article
Year (down) 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 066 - 26pp
Keywords modified gravity; Wormholes; gravity
Abstract We consider reflection-asymmetric thin-shell wormholes within Palatini f(R) gravity using a matching procedure of two patches of electrovacuum space-times at a hypersurface (the shell) via suitable junction conditions. The conditions for having (linearly) stable wormholes supported by positive-energy matter sources are determined. We also identify some subsets of parameters able to locate the shell radius above the event horizon (when present) but below the photon sphere (on both sides). We illustrate with an specific example that such two photon spheres allow an observer on one of the sides of the wormhole to see another (circular) shadow in addition to the one generated by its own photon sphere, which is due to the photons passing above the maximum of the effective potential on its side and bouncing back across the throat due to a higher effective potential on the other side. We finally comment on the capability of these double shadows to seek for traces of new gravitational physics beyond that described by General Relativity.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000644501000029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4823
Permanent link to this record
 

 
Author Bombacigno, F.; Boudet, S.; Olmo, G.J.; Montani, G.
Title Big bounce and future time singularity resolution in Bianchi I cosmologies: The projective invariant Nieh-Yan case Type Journal Article
Year (down) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 12 Pages 124031
Keywords
Abstract We extend the notion of the Nieh-Yan invariant to generic metric-affine geometries, where both torsion and nonmetricity are taken into account. Notably, we show that the properties of projective invariance and topologicity can be independently accommodated by a suitable choice of the parameters featuring this new Nieh-Yan term. We then consider a special class of modified theories of gravity able to promote the Immirzi parameter to a dynamical scalar field coupled to the Nieh-Yan form, and we discuss in more detail the dynamics of the effective scalar tensor theory stemming from such a revised theoretical framework. We focus, in particular, on cosmological Bianchi I models and we derive classical solutions where the initial singularity is safely removed in favor of a big bounce, which is ultimately driven by the nonminimal coupling with the Immirzi field. These solutions, moreover, turn out to be characterized by finite time singularities, but we show that such critical points do not spoil the geodesic completeness and wave regularity of these spacetimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000661819200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4870
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Wojnar, A.
Title Parameterized nonrelativistic limit of stellar structure equations in Ricci-based gravity theories Type Journal Article
Year (down) 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 2 Pages 024045 - 8pp
Keywords
Abstract We present the nonrelativistic limit of the stellar structure equations of Ricci-based gravities, a family of metric-affine theories whose Lagrangian is built via contractions of the metric with the Ricci tensor of an a priori independent connection. We find that this limit is characterized by four parameters that arise in the expansion of several geometric quantities in powers of the stress-energy tensor of the matter fields. We discuss the relevance of this result for the phenomenology of nonrelativistic stars, such as main-sequence stars as well as several substellar objects.
Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto, CSIC, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000674579300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4914
Permanent link to this record
 

 
Author Guerrero, M.; Olmo, G.J.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title Shadows and optical appearance of black bounces illuminated by a thin accretion disk Type Journal Article
Year (down) 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 036 - 19pp
Keywords GR black holes; Wormholes; modified gravity; accretion
Abstract We study the light rings and shadows of an uniparametric family of spherically symmetric geometries interpolating between the Schwarzschild solution, a regular black hole, and a traversable wormhole, and dubbed as black bounces, all of them sharing the same critical impact parameter. We consider the ray-tracing method in order to study the impact parameter regions corresponding to the direct, lensed, and photon ring emissions, finding a broadening of all these regions for black bounce solutions as compared to the Schwarzschild one. Using this, we determine the optical appearance of black bounces when illuminated by three standard toy models of optically and geometrically thin accretion disks viewed in face-on orientation.
Address [Guerrero, Merce; Rubiera-Garcia, Diego] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain, Email: merguerr@ucm.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000686656000022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4943
Permanent link to this record