toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M.; Streicher, J. url  doi
openurl 
  Title Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections Type Journal Article
  Year (down) 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 181-50pp  
  Keywords Higgs Physics; Perturbative QCD  
  Abstract Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.  
  Address [Baglio, Julien] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: julien.baglio@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000531394200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4391  
Permanent link to this record
 

 
Author Auclair, P.; Blanco-Pillado, J.J.; Figueroa, D.G.; Jenkins, A.C.; Lewicki, M.; Sakellariadou, M.; Sanidas, S.; Sousa, L.; Steer, D.A.; Wachter, J.M.; Kuroyanagi, S. url  doi
openurl 
  Title Probing the gravitational wave background from cosmic strings with LISA Type Journal Article
  Year (down) 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 034 - 50pp  
  Keywords Cosmic strings; domain walls; monopoles; gravitational waves / sources; physics of the early universe; primordial gravitational waves (theory)  
  Abstract Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions G μgreater than or similar to O(10(-17)), improving by about 6 orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially 3 orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISA's frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.  
  Address [Auclair, Pierre; Steer, Daniele A.] Univ Paris, Lab Astroparticule & Cosmol, 10 Rue Alice Domon & Leonie Duquet, Paris 75013, France, Email: daniel.figueroa@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000531476300035 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4393  
Permanent link to this record
 

 
Author Biggio, C.; Fernandez-Martinez, E.; Filaci, M.; Hernandez-Garcia, J.; Lopez-Pavon, J. url  doi
openurl 
  Title Global bounds on the Type-III Seesaw Type Journal Article
  Year (down) 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 022 - 33pp  
  Keywords Neutrino Physics; Beyond Standard Model  
  Abstract We derive general bounds on the Type-III Seesaw parameters from a global fit to flavor and electroweak precision data. We explore and compare three Type-III Seesaw realizations: a general scenario, where an arbitrary number of heavy triplets is integrated out without any further assumption, and the more constrained cases in which only 3 or 2 (minimal scenario) additional heavy states are included. The latter assumption implies rather non-trivial correlations in the Yukawa flavor structure of the model so as to reproduce the neutrino masses and mixings as measured in neutrino oscillations experiments and thus qualitative differences can be found with the more general scenario. In particular, we find that, while the bounds on most elements of the dimension 6 operator coefficients are of order 10(-4) for the general and 3-triplet cases, the 2-triplet scenario is more strongly constrained with bounds between 10(-5) and 10(-7) for the different flavours. We also discuss how these correlations affect the present CMS constraints on the Type-III Seesaw in the minimal 2-triplet scenario.  
  Address [Biggio, Carla; Filaci, Manuele] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy, Email: carla.biggio@ge.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000533907600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4400  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Moreno Llacer, M.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title ATLAS data quality operations and performance for 2015-2018 data-taking Type Journal Article
  Year (down) 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 4 Pages P04003 - 43pp  
  Keywords Large detector systems for particle and astroparticle physics; Large detector-systems performance  
  Abstract The ATLAS detector at the Large Hadron Collider reads out particle collision data from over 100 million electronic channels at a rate of approximately 100 kHz, with a recording rate for physics events of approximately 1 kHz. Before being certified for physics analysis at computer centres worldwide, the data must be scrutinised to ensure they are clean from any hardware or software related issues that may compromise their integrity. Prompt identification of these issues permits fast action to investigate, correct and potentially prevent future such problems that could render the data unusable. This is achieved through the monitoring of detector-level quantities and reconstructed collision event characteristics at key stages of the data processing chain. This paper presents the monitoring and assessment procedures in place at ATLAS during 2015-2018 data-taking. Through the continuous improvement of operational procedures, ATLAS achieved a high data quality efficiency, with 95.6% of the recorded proton-proton collision data collected at root s = 13 TeV certified for physics analysis.  
  Address [Banerjee, S.; Dang, N. P.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000534740000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4402  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Test of lepton universality with Lambda(0)(b) -> pK(-) l(+)l(-) Type Journal Article
  Year (down) 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 40 - 27pp  
  Keywords B physics; Branching fraction; Flavour Changing Neutral Currents; Hadron; Hadron scattering (experiments); Rare decay  
  Abstract The ratio of branching fractions of the decays -> pK(-)mu(+)mu(-),RpK-1}, is measured for the first time using proton-proton collision data corresponding to an integrated luminosity of 4.7 fb(-1) recorded with the LHCb experiment at center-of-mass energies of 7, 8 and 13 TeV. In the dilepton mass-squared range 0.1 < q(2)< 6.0 GeV2/c(4) and the pK(-) mass range m(pK(-)) < 2600 MeV/c(2), the ratio of branching fractions is measured to be RpK-1=1.17-0.16+0.18 +/- 0.0$$ {R}{pK}<^>{-1}={1.17}{-0.16}<^>{+0.18}\pm 0.07 $$\end{document}, where the first uncertainty is statistical and the second systematic. This is the first test of lepton universality with b baryons and the first observation of the decay -> pK(-)e(+)e(-).  
  Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Erri, A. Massa; Soares Lavra, L.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: vitalii.lisovskyi@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000534629900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4415  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva