toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Masud, M.; Mehta, P.; Ternes, C.A.; Tortola, M. url  doi
openurl 
  Title Non-standard neutrino oscillations: perspective from unitarity triangles Type Journal Article
  Year (down) 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 171 - 19pp  
  Keywords Beyond Standard Model; CP violation; Neutrino Physics  
  Abstract We formulate an alternative approach based on unitarity triangles to describe neutrino oscillations in presence of non-standard interactions (NSI). Using perturbation theory, we derive the expression for the oscillation probability in case of NSI and cast it in terms of the three independent parameters of the leptonic unitarity triangle (LUT). The form invariance of the probability expression (even in presence of new physics scenario as long as the mixing matrix is unitary) facilitates a neat geometric view of neutrino oscillations in terms of LUT. We examine the regime of validity of perturbative expansions in the NSI case and make comparisons with approximate expressions existing in literature. We uncover some interesting dependencies on NSI terms while studying the evolution of LUT parameters and the Jarlskog invariant. Interestingly, the geometric approach based on LUT allows us to express the oscillation probabilities for a given pair of neutrino flavours in terms of only three (and not four) degrees of freedom which are related to the geometric properties (sides and angles) of the triangle. Moreover, the LUT parameters are invariant under rephasing transformations and independent of the parameterization adopted.  
  Address [Masud, Mehedi] Inst Basic Sci IBS, Ctr Theoret Phys Universe, Daejeon 34126, South Korea, Email: masud@ibs.re.kr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000658364000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4864  
Permanent link to this record
 

 
Author Beniwal, A.; Herrero-Garcia, J.; Leerdam, N.; White, M.; Williams, A.G. url  doi
openurl 
  Title The ScotoSinglet Model: a scalar singlet extension of the Scotogenic Model Type Journal Article
  Year (down) 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 136 - 34pp  
  Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics  
  Abstract The Scotogenic Model is one of the most minimal models to account for both neutrino masses and dark matter (DM). In this model, neutrino masses are generated at the one-loop level, and in principle, both the lightest fermion singlet and the lightest neutral component of the scalar doublet can be viable DM candidates. However, the correct DM relic abundance can only be obtained in somewhat small regions of the parameter space, as there are strong constraints stemming from lepton flavour violation, neutrino masses, electroweak precision tests and direct detection. For the case of scalar DM, a sufficiently large lepton-number-violating coupling is required, whereas for fermionic DM, coannihilations are typically necessary. In this work, we study how the new scalar singlet modifies the phenomenology of the Scotogenic Model, particularly in the case of scalar DM. We find that the new singlet modifies both the phenomenology of neutrino masses and scalar DM, and opens up a large portion of the parameter space of the original model.  
  Address [Beniwal, Ankit] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol CP3, B-1348 Louvain La Neuve, Belgium, Email: ankit.beniwal@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000668611300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4881  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Angular analysis of B0 -> D*- D*s+ with D*s+ -> Ds + gamma decays Type Journal Article
  Year (down) 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 177 - 30pp  
  Keywords B physics; Branching fraction; Hadron-Hadron scattering (experiments); Polarization  
  Abstract The first full angular analysis of the B0 -> D-Ds+ decay is performed using 6 fb(-1) of pp collision data collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The Ds+-> Ds+gamma and D*- -> D<overbar></mml:mover>0- vector meson decays are used with the subsequent Ds+ -> K+K-pi (+) and D<overbar></mml:mover>0 -> K+pi (-) decays. All helicity amplitudes and phases are measured, and the longitudinal polarisation fraction is determined to be f(L) = 0.578 +/- 0.010 +/- 0.011 with world-best precision, where the first uncertainty is statistical and the second is systematic. The pattern of helicity amplitude magnitudes is found to align with expectations from quark-helicity conservation in B decays. The ratio of branching fractions [B(B0 -> D-Ds+) x B(Ds+-> Ds+gamma)]/B(B-0 -> D(*-)Ds+) is measured to be 2.045 +/- 0.022 +/- 0.071 with world-best precision. In addition, the first observation of the Cabibbo-suppressed B-s -> D(*-)Ds+ decay is made with a significance of seven standard deviations. The branching fraction ratio B(B-s -> D(*-)Ds<mml:mo>+)/B(B-0 -> D(*-)Ds<mml:mo>+) is measured to be 0.049 +/- 0.006 +/- 0.003 +/- 0.002, where the third uncertainty is due to limited knowledge of the ratio of fragmentation fractions.<fig id=“Figa” position=“anchor”><graphic position=“anchor” specific-use=“HTML” mime-subtype=“JPEG” xmlns:xlink=“http://www.w3.org/1999/xlink” xlink:href=“MediaObjects/13130202116089FigaHTML.jpg” id=“MO1”></graphic  
  Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Robbe, P.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: donal.hill@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000671168600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4890  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Oliver, S. doi  openurl
  Title PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE Type Journal Article
  Year (down) 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 267 Issue Pages 108065 - 12pp  
  Keywords Radiation transport; Monte Carlo simulation; Electron-photon showers; Parallel computing; MPI; Medical physics  
  Abstract Monte Carlo methods provide detailed and accurate results for radiation transport simulations. Unfortunately, the high computational cost of these methods limits its usage in real-time applications. Moreover, existing computer codes do not provide a methodology for adapting these kinds of simulations to specific problems without advanced knowledge of the corresponding code system, and this restricts their applicability. To help solve these current limitations, we present PenRed, a general-purpose, standalone, extensible and modular framework code based on PENELOPE for parallel Monte Carlo simulations of electron-photon transport through matter. It has been implemented in C++ programming language and takes advantage of modern object-oriented technologies. In addition, PenRed offers the capability to read and process DICOM images as well as to construct and simulate image-based voxelized geometries, so as to facilitate its usage in medical applications. Our framework has been successfully verified against the original PENELOPE Fortran code. Furthermore, the implemented parallelism has been tested showing a significant improvement in the simulation time without any loss in precision of results. Program summary Program title: PenRed: Parallel Engine for Radiation Energy Deposition. CPC Library link to program files: https://doi .org /10 .17632/rkw6tvtngy.1 Licensing provision: GNU Affero General Public License (AGPL). Programming language: C++ standard 2011. Nature of problem: Monte Carlo simulations usually require a huge amount of computation time to achieve low statistical uncertainties. In addition, many applications necessitate particular characteristics or the extraction of specific quantities from the simulation. However, most available Monte Carlo codes do not provide an efficient parallel and truly modular structure which allows users to easily customise their code to suit their needs without an in-depth knowledge of the code system. Solution method: PenRed is a fully parallel, modular and customizable framework for Monte Carlo simulations of the passage of radiation through matter. It is based on the PENELOPE [1] code system, from which inherits its unique physics models and tracking algorithms for charged particles. PenRed has been coded in C++ following an object-oriented programming paradigm restricted to the C++11 standard. Our engine implements parallelism via a double approach: on the one hand, by using standard C++ threads for shared memory, improving the access and usage of the memory, and, on the other hand, via the MPI standard for distributed memory infrastructures. Notice that both kinds of parallelism can be combined together in the same simulation. Moreover, both threads and MPI processes, can be balanced using the builtin load balance system (RUPER-LB [30]) to maximise the performance on heterogeneous infrastructures. In addition, PenRed provides a modular structure with methods designed to easily extend its functionality. Thus, users can create their own independent modules to adapt our engine to their needs without changing the original modules. Furthermore, user extensions will take advantage of the builtin parallelism without any extra effort or knowledge of parallel programming. Additional comments including restrictions and unusual features: PenRed has been compiled in linux systems withg++ of GCC versions 4.8.5, 7.3.1, 8.3.1 and 9; clang version 3.4.2 and intel C++ compiler (icc) version 19.0.5.281. Since it is a C++11-standard compliant code, PenRed should be able to compile with any compiler with C++11 support. In addition, if the code is compiled without MPI support, it does not require any non standard library. To enable MPI capabilities, the user needs to install whatever available MPI implementation, such as openMPI [24] or mpich [25], which can be found in the repositories of any linux distribution. Finally, to provide DICOM processing support, PenRed can be optionally compiled using the dicom toolkit (dcmtk) [32] library. Thus, PenRed has only two optional dependencies, an MPI implementation and the dcmtk library.  
  Address [Gimenez-Alventosa, V] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Ctr Mixto CSIC, Cami Vera S-N, Valencia 46022, Spain, Email: vicent.gimenez@i3m.upv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000678508900001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4907  
Permanent link to this record
 

 
Author Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J. url  doi
openurl 
  Title Global constraints on neutral-current generalized neutrino interactions Type Journal Article
  Year (down) 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 061 - 26pp  
  Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics  
  Abstract We study generalized neutrino interactions (GNI) for several neutrino processes, including neutrinos from electron-positron collisions, neutrino-electron scattering, and neutrino deep inelastic scattering. We constrain scalar, pseudoscalar, and tensor new physics effective couplings, based on the standard model effective field theory at low energies. We have performed a global analysis for the different effective couplings. We also present the different individual constraints for each effective parameter (scalar, pseudoscalar, and tensor). Being a global analysis, we show robust results for the restrictions on the different GNI parameters and improve some of these bounds.  
  Address [Escrihuela, F. J.] Univ Valencia, Inst Fis Corpuscular CSIC, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000675383900009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4911  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva