toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of CP observables in the process B-0 -> DK*0 with two- and four-body D decays Type Journal Article
  Year (down) 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 041 - 30pp  
  Keywords CKM angle gamma; CP violation; Hadron-Hadron scattering (experiments); B physics; Flavor physics  
  Abstract Measurements of CP observables in B-0 -> DK0 decays are presented, where D represents a superposition of D-0 and D0 states. The D meson is reconstructed in the two-body final states K+pi(-), pi K-+(-), K+K- and pi(+)pi(-), and, for the first time, in the fourbody final states K+pi(-)pi(+)pi(-), pi K-+(-)pi(+)pi(-) and pi(+)pi(-)pi(+)pi(-). The analysis uses a sample of neutral B mesons produced in proton-proton collisions, corresponding to an integrated luminosity of 1.0, 2.0 and 1.8 fb(-1) collected with the LHCb detector at centre-of-mass energies of ,8 and 13 TeV, respectively. First observations of the decays B-0 -> D(pi K-+(-))K-0 and B-0 -> D(pi(+)pi(-)pi(+)pi(-))K-0 are obtained. The measured observables are interpreted in terms of the CP -violating weak phase gamma.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Soares Lavra, l.] CBPF, Rio De Janeiro, Brazil, Email: hannah.louise.pullen@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000482465100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4117  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M. url  doi
openurl 
  Title Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2 Type Journal Article
  Year (down) 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P09011 - 35pp  
  Keywords Gaseous detectors; Muon spectrometers; Particle tracking detectors (Gaseous detectors); Wire chambers (MWPC, Thin-gap chambers, drift chambers, drift tubes, proportional chambers etc)  
  Abstract The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 +/- 2.2 μm.  
  Address [Deliot, F.; Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486990000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4149  
Permanent link to this record
 

 
Author Ortiz Arciniega, J.L.; Carrio, F.; Valero, A. url  doi
openurl 
  Title FPGA implementation of a deep learning algorithm for real-time signal reconstruction in particle detectors under high pile-up conditions Type Journal Article
  Year (down) 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 14 Issue Pages P09002 - 13pp  
  Keywords Data processing methods; Pattern recognition; cluster finding; calibration and fitting methods; Simulation methods and programs  
  Abstract The analog signals generated in the read-out electronics of particle detectors are shaped prior to the digitization in order to improve the signal to noise ratio (SNR). The real amplitude of the analog signal is then obtained using digital filters, which provides information about the energy deposited in the detector. The classical digital filters have a good performance in ideal situations with Gaussian electronic noise and no pulse shape distortion. However, high-energy particle colliders, such as the Large Hadron Collider (LHC) at CERN, can produce multiple simultaneous events, which produce signal pileup. The performance of classical digital filters deteriorates in these conditions since the signal pulse shape gets distorted. In addition, this type of experiments produces a high rate of collisions, which requires high throughput data acquisitions systems. In order to cope with these harsh requirements, new read-out electronics systems are based on high-performance FPGAs, which permit the utilization of more advanced real-time signal reconstruction algorithms. In this paper, a deep learning method is proposed for real-time signal reconstruction in high pileup particle detectors. The performance of the new method has been studied using simulated data and the results are compared with a classical FIR filter method. In particular, the signals and FIR filter used in the ATLAS Tile Calorimeter are used as benchmark. The implementation, resources usage and performance of the proposed Neural Network algorithm in FPGA are also presented.  
  Address [Ortiz Arciniega, J. L.] Univ Valencia, Avinguda Univ S-N, Burjassot, Spain, Email: orarjo@alumni.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000486990000002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4150  
Permanent link to this record
 

 
Author Ralet, D. et al; Gadea, A.; Perez, R.M. doi  openurl
  Title Evidence of octupole-phonons at high spin in Pb-207<bold> </bold> Type Journal Article
  Year (down) 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 797 Issue Pages 134797 - 6pp  
  Keywords AGATA spectrometer; gamma-Ray tracking; VAMOS plus plus spectrometer; Plunger device; Nuclear deformation; Octupole phonon  
  Abstract A lifetime measurement of the 19/2(-) state in Pb-207 has been performed using the Recoil Distance Doppler-Shift (RDDS) method. The nuclei of interest were produced in multi-nucleon transfer reactions induced by a Pb-208 beam impinging on a Mo-100 enriched target. The beam-like nuclei were detected<bold> </bold>and identified in terms of their atomic mass number in the VAMOS++ spectrometer while the prompt gamma rays were detected by the AGATA tracking array. The measured large reduced transition probability B(E3, 19/2(-) -> 13/2(+)) = 40(8) W.u. is the first indication of the octupole phonon at high spin in Pb-207. An analysis in terms of a particle-octupole-vibration coupling model indicates that the measured B(E3) value in Pb-207 is compatible with the contributions from single-phonon and single particle E3 as well as E3 strength arising from the double-octupole-phonon 6(+) state, all adding coherently. A crucial aspect of the coupling model, namely the strong mixing between single-hole and the phonon-hole states, is confirmed in a realistic shell-model calculation.  
  Address [Ralet, D.; Georgiev, G.; Ljungvall, J.; Dupont, E.; Konstantinopoulos, T.; Korichi, A.; Lozeva, R.] Univ Paris Saclay, Univ Paris Sud, CSNSM, CNRS IN2P3, F-91405 Orsay, France, Email: clement@ganil.fr  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000488071200015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4163  
Permanent link to this record
 

 
Author Bernabeu, J.; Navarro-Salas, J. url  doi
openurl 
  Title A Non-Local Action for Electrodynamics: Duality Symmetry and the Aharonov-Bohm Effect, Revisited Type Journal Article
  Year (down) 2019 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 11 Issue 10 Pages 1191 - 13pp  
  Keywords non-local action; electrodynamics; electromagnetic duality symmetry; Aharonov-Bohm effect  
  Abstract A non-local action functional for electrodynamics depending on the electric and magnetic fields, instead of potentials, has been proposed in the literature. In this work we elaborate and improve this proposal. We also use this formalism to confront the electric-magnetic duality symmetry of the electromagnetic field and the Aharonov-Bohm effect, two subtle aspects of electrodynamics that we examine in a novel way. We show how the former can be derived from the simple harmonic oscillator character of vacuum electrodynamics, while also demonstrating how the magnetic version of the latter naturally arises in an explicitly non-local manner.  
  Address [Bernabeu, Joan] Ludwig Maximilians Univ Munchen, Phys Dept, Theresienstr 37, D-80333 Munich, Germany, Email: Joan.Bernabeu@physik.uni-muenchen.de;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000495457600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4192  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva