toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P. doi  openurl
  Title Correction factors for ionization chamber measurements with the 'Valencia' and 'large field Valencia' brachytherapy applicators Type Journal Article
  Year (down) 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 63 Issue 12 Pages 125004 - 10pp  
  Keywords skin applicator; Valencia applicator; large field Valencia applicator; HDR brachytherap; brachytherapy dosimetry; Monte Carlo  
  Abstract Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the 'Valencia' and 'large field Valencia' shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the 'Valencia' and 343 keV for the 'large field Valencia'. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the 'Valencia' applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.  
  Address [Gimenez-Alventosa, V.] Univ Politecn Valencia, CSIC, Ctr Mixto, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain, Email: Javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000434682500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3609  
Permanent link to this record
 

 
Author Garcia-Cases, F.; Perez-Calatayud, J.; Ballester, F.; Vijande, J.; Granero, D. doi  openurl
  Title Peripheral dose around a mobile linac for intraoperative radiotherapy: radiation protection aspects Type Journal Article
  Year (down) 2018 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 38 Issue 4 Pages 1393-1411  
  Keywords Mobetron; mobile electron linear accelerator; radiotherapy intraoperative  
  Abstract The aim of this work is to analyse the scattered radiation produced by the mobile accelerator Mobetron 1000. To do so, detailed Monte Carlo simulations using two different codes, Penelope2008 and Geant4, were performed. Measurements were also done. To quantify the attenuation due to the internal structures, present in the accelerator head, on the scattered radiation produced, some of the main structural shielding in the Mobetron 1000 has been incorporated into the geometry simulation. Results are compared with measurements. Some discrepancies between the calculated and measured dose values were found. These differences can be traced back to the importance of the radiation component due to low energy scattered electrons. This encouraged us to perform additional calculations to separate the role played by this component. Ambient dose equivalent, H*(10), outside of the operating room (OR) has been evaluated using Geant4. H*(10) has been measured inside and outside the OR, being its values compatible with those reported in the literature once the low energy electron component is removed. With respect to the role played by neutrons, estimations of neutron H*(10) using Geant4 together with H*(10) measurements has been performed for the case of the 12 MeV electron beam. The values obtained agree with the experimental values existing in the literature, being much smaller than those registered in conventional accelerators. This study is a useful tool for the clinical user to investigate the radiation protection issues arising with the use of these accelerators in ORs without structural shielding. These results will also enable to better fix the maximum number of treatments that could be performed while insuring adequate radiological protection of workers and public in the hospital.  
  Address [Garcia-Cases, F.] Hosp Univ San Juan de Alicante, Serv Radiofis & Protecc Radiol, Alacant, Spain, Email: garcia_frad@gva.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448769200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3784  
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Antunes, P.C.G.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Andreo, P. doi  openurl
  Title Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy Type Journal Article
  Year (down) 2017 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 62 Issue 1 Pages 146-164  
  Keywords Monte Carlo; dosimetry; low-energy seed; collision-kerma; mass energy-absorption coefficients; energy-fluence correction factor  
  Abstract The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).  
  Address [Gimenez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: vijande@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000391567700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2923  
Permanent link to this record
 

 
Author Hueso-Gonzalez, F.; Ballester, F.; Perez-Calatayud, J.; Siebert, F.A.; Vijande, J. doi  openurl
  Title Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent I-125 prostate brachytherapy Type Journal Article
  Year (down) 2017 Publication Brachytherapy Abbreviated Journal Brachytherapy  
  Volume 16 Issue 3 Pages 616-623  
  Keywords Brachytherapy; Low-dose rate; Heterogeneities; Prostate; Calcifications; Dosimetry  
  Abstract PURPOSE: RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 1251 seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. METHODS AND MATERIALS: To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. RESULTS: Dose volume histogram related parameters like prostate D-90, rectum D-2cc, or urethra D-10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. CONCLUSIONS: The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen.  
  Address [Hueso-Gonzalez, Fernando] Target Systemelekt GmbH, Wuppertal, Germany, Email: javier.vijande@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1538-4721 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000402231600019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3151  
Permanent link to this record
 

 
Author Ibanez-Rosello, B.; Bautista-Ballesteros, J.A.; Candela-Juan, C.; Villaescusa, J.I.; Ballester, F.; Vijande, J.; Perez-Calatayud, J. doi  openurl
  Title Evaluation of the shielding in a treatment room with an electronic brachytherapy unit Type Journal Article
  Year (down) 2017 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.  
  Volume 37 Issue 2 Pages N5-N12  
  Keywords Esteya; electronic brachytherapy; shielding; radiation protection  
  Abstract Esteya (R) (Elekta Brachytherapy, Veenendaal, The Netherlands) is an electronic brachytherapy (eBT) system based on a 69.5 kVp x-ray source and a set of collimators of 1 to 3 cm in diameter, used for treating non-melanoma skin cancer lesions. This study aims to estimate room shielding requirements for this unit. The non-primary (scattered and leakage) ambient dose equivalent rates were measured with a Berthold LB-133 monitor (Berthold Technologies, Bad Wildbad, Germany). The latter ranges from 17 mSv h(-1) at 0.25 m distance from the x-ray source to 0.1 mSv h(-1) at 2.5 m. The necessary room shielding was then estimated following US and some European guidelines. The room shielding for all barriers considered was below 2 mmPb. The dose to a companion who, exceptionally, would stay with the patient during all treatment was estimated to be below 1 mSv if a leaded apron is used. In conclusion, Esteya shielding requirements are minimal.  
  Address [Ibanez-Rosello, Blanca; Ignacio Villaescusa, Juan] La Fe Univ, Radioprotect Dept, E-46026 Valencia, Spain, Email: blanca.ibanez.rosello@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0952-4746 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000413778600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3344  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva