|   | 
Details
   web
Records
Author Hueso-Gonzalez, F.; Ballester, F.; Perez-Calatayud, J.; Siebert, F.A.; Vijande, J.
Title Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent I-125 prostate brachytherapy Type Journal Article
Year (up) 2017 Publication Brachytherapy Abbreviated Journal Brachytherapy
Volume 16 Issue 3 Pages 616-623
Keywords Brachytherapy; Low-dose rate; Heterogeneities; Prostate; Calcifications; Dosimetry
Abstract PURPOSE: RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 1251 seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. METHODS AND MATERIALS: To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. RESULTS: Dose volume histogram related parameters like prostate D-90, rectum D-2cc, or urethra D-10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. CONCLUSIONS: The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen.
Address [Hueso-Gonzalez, Fernando] Target Systemelekt GmbH, Wuppertal, Germany, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Elsevier Science Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1538-4721 ISBN Medium
Area Expedition Conference
Notes WOS:000402231600019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3151
Permanent link to this record
 

 
Author Ibanez-Rosello, B.; Bautista-Ballesteros, J.A.; Candela-Juan, C.; Villaescusa, J.I.; Ballester, F.; Vijande, J.; Perez-Calatayud, J.
Title Evaluation of the shielding in a treatment room with an electronic brachytherapy unit Type Journal Article
Year (up) 2017 Publication Journal of Radiological Protection Abbreviated Journal J. Radiol. Prot.
Volume 37 Issue 2 Pages N5-N12
Keywords Esteya; electronic brachytherapy; shielding; radiation protection
Abstract Esteya (R) (Elekta Brachytherapy, Veenendaal, The Netherlands) is an electronic brachytherapy (eBT) system based on a 69.5 kVp x-ray source and a set of collimators of 1 to 3 cm in diameter, used for treating non-melanoma skin cancer lesions. This study aims to estimate room shielding requirements for this unit. The non-primary (scattered and leakage) ambient dose equivalent rates were measured with a Berthold LB-133 monitor (Berthold Technologies, Bad Wildbad, Germany). The latter ranges from 17 mSv h(-1) at 0.25 m distance from the x-ray source to 0.1 mSv h(-1) at 2.5 m. The necessary room shielding was then estimated following US and some European guidelines. The room shielding for all barriers considered was below 2 mmPb. The dose to a companion who, exceptionally, would stay with the patient during all treatment was estimated to be below 1 mSv if a leaded apron is used. In conclusion, Esteya shielding requirements are minimal.
Address [Ibanez-Rosello, Blanca; Ignacio Villaescusa, Juan] La Fe Univ, Radioprotect Dept, E-46026 Valencia, Spain, Email: blanca.ibanez.rosello@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0952-4746 ISBN Medium
Area Expedition Conference
Notes WOS:000413778600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3344
Permanent link to this record
 

 
Author Ma, Y.Z.; Vijande, J.; Ballester, F.; Tedgren, A.C.; Granero, D.; Haworth, A.; Mourtada, F.; Fonseca, G.P.; Zourari, K.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Sloboda, R.S.; Smith, R.; Chamberland, M.J.P.; Thomson, R.M.; Verhaegen, F.; Beaulieu, L.
Title A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate Ir-192 brachytherapy Type Journal Article
Year (up) 2017 Publication Medical Physics Abbreviated Journal Med. Phys.
Volume 44 Issue 11 Pages 5961-5976
Keywords Ir-192; HDR brachytherapy; model based dose calculation; Monte Carlo methods; shielded applicator; TG-186
Abstract PurposeA joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) Ir-192 shielded applicator has been designed and benchmarked. MethodsA generic HDR Ir-192 shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 Ir-192 source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra((R)) Brachy with Advanced Collapsed-cone Engine, ACE, and BrachyVision ACUROS) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported source centered in water and source displaced test cases, and the new source centered in applicator test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. ResultsThe local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the source centered in water and source displaced test cases and for the clinically relevant part of the unshielded volume in the source centered in applicator case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. ConclusionsThe combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR Ir-192 brachytherapy.
Address [Ma, Yunzhi; Beaulieu, Luc] CHU Quebec, Dept Radio Oncol & Axe Oncol, Ctr Rech, Quebec City, PQ G1R 2J6, Canada, Email: yunzhi.Ma@crchuq.ulaval.ca
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-2405 ISBN Medium
Area Expedition Conference
Notes WOS:000414970800039 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3370
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P.
Title Correction factors for ionization chamber measurements with the 'Valencia' and 'large field Valencia' brachytherapy applicators Type Journal Article
Year (up) 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 63 Issue 12 Pages 125004 - 10pp
Keywords skin applicator; Valencia applicator; large field Valencia applicator; HDR brachytherap; brachytherapy dosimetry; Monte Carlo
Abstract Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the 'Valencia' and 'large field Valencia' shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the 'Valencia' and 343 keV for the 'large field Valencia'. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the 'Valencia' applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.
Address [Gimenez-Alventosa, V.] Univ Politecn Valencia, CSIC, Ctr Mixto, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain, Email: Javier.vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000434682500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3609
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Ballester, F.; Vijande, J.; Gimenez, V.; Gimenez-Alventosa, V.; Perez-Calatayud, J.; Niatsetski, Y.; Andreo, P.
Title Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya(R) unit: a Monte Carlo study Type Journal Article
Year (up) 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 24 Pages 245026 - 12pp
Keywords electronic brachytherapy; eBT; dosimetry; ionization chamber; Monte Carlo
Abstract Three different correction factors for measurements with the parallel-plate ionization chamber PTW T34013 on the Esteya electronic brachytherapy unit have been investigated. This chamber type is recommended by AAPM TG-253 for depth-dose measurements in the 69.5 kV x-ray beam generated by the Esteya unit. Monte Carlo simulations using the PENELOPE-2018 system were performed to determine the absorbed dose deposited in water and in the chamber sensitive volume at different depths with a Type A uncertainty smaller than 0.1%. Chamber-to-chamber differences have been explored performing measurements using three different chambers. The range of conical applicators available, from 10 to 30 mm in diameter, has been explored. Using a depth-independent global chamber perturbation correction factor without a shift of the effective point of measurement yielded differences between the absorbed dose to water and the corrected absorbed dose in the sensitive volume of the chamber of up to 1% and 0.6% for the 10 mm and 30 mm applicators, respectively. Calculations using a depth-dependent perturbation factor, including or excluding a shift of the effective point of measurement, resulted in depth-dose differences of about +/- 0.5% or less for both applicators. The smallest depth-dose differences were obtained when a shift of the effective point of measurement was implemented, being displaced 0.4 mm towards the center of the sensitive volume of the chamber. The correction factors were obtained with combined uncertainties of 0.4% (k = 2). Uncertainties due to chamber-to-chamber differences are found to be lower than 2%. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each electronic brachytherapy device and ionization chamber used for its dosimetry.
Address [Valdes-Cortez, Christian; Ballester, Facundo; Vijande, Javier] Univ Valencia UV, Dept Fis Atom Mol & Nucl, Burjassot, Spain, Email: cvalcort@gmail.com
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000618031500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4708
Permanent link to this record