toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, P.; Ding, G.J.; Rojas, A.D.; Vaquera-Araujo, C.A.; Valle, J.W.F. url  doi
openurl 
  Title Warped flavor symmetry predictions for neutrino physics Type Journal Article
  Year (up) 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 007 - 27pp  
  Keywords Quark Masses and SM Parameters; Neutrino Physics; Discrete and Finite Symmetries  
  Abstract A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Delta(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.  
  Address [Chen, Peng; Ding, Gui-Jun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367831200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2518  
Permanent link to this record
 

 
Author Faus-Golfe, A.; Navarro, J.; Fuster Martinez, N.; Resta Lopez, J.; Giner Navarro, J. doi  openurl
  Title Emittance reconstruction from measured beam sizes in ATF2 and perspectives for ILC Type Journal Article
  Year (up) 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 819 Issue Pages 122-138  
  Keywords Beam size; Emittance; Linear Colliders  
  Abstract The projected emittance (2D) and the intrinsic emittance (4D) reconstruction method by using the beam size measurements at different locations is analyzed in order to study analytically the conditions of solvability of the systems of equations involved in this process. Some conditions are deduced and discussed, and general guidelines about the locations of the measurement stations have been obtained to avoid unphysical results. The special case of the multi-Optical Transition Radiation system (m-OTR), made of four measurement stations, in the Extraction Line (EXT) of Accelerator Test Facility 2 (ATF2) has been simulated in much detail and compared with measurements. Finally a feasibility study of a multi station system for fast transverse beam size measurement, emittance reconstruction and coupling correction in the Ring to Main Linac (RTML) of International Linear Collider (ILC) Diagnostic sections of the RTML has been discussed in detail.  
  Address [Faus-Golfe, A.; Navarro, J.; Fuster Martinez, N.; Giner Navarro, J.] Inst Fis Corpuscular CSIC UV, Madrid, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372318800017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2581  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Optical and X-ray early follow-up of ANTARES neutrino alerts Type Journal Article
  Year (up) 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 062 - 29pp  
  Keywords gamma ray burst experiments; neutrino astronomy; X-ray telescopes  
  Abstract High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or Xray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with Xray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.  
  Address [Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M.; Feis, I.; Herrero, A.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain, Email: dornic@cppm.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372467600063 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2588  
Permanent link to this record
 

 
Author Escudero, M.; Ramirez, H.; Boubekeur, L.; Giusarma, E.; Mena, O. url  doi
openurl 
  Title The present and future of the most favoured inflationary models after Planck 2015 Type Journal Article
  Year (up) 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 020 - 21pp  
  Keywords inflation; cosmological parameters from CMBR; CMBR experiments  
  Abstract The value of the tensor-to-scalar ratio r in the region allowed by the latest Planck 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current Planck temperature and polarization data. Rather than focusing only on r, we focus as well on the running of the primordial power spectrum, alpha(s) and the running thereof, beta(s). If future cosmological measurements, as those from the COrE mission, confirm the current best-fit value for beta(s) greater than or similar to 10(-2) as the preferred one, it will be possible to rule-out the most favoured inflationary models.  
  Address [Escudero, Miguel; Ramirez, Hector; Boubekeur, Lotfi; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: miguel.escudero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000372467600021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2590  
Permanent link to this record
 

 
Author Hernandez-Prieto, A.; Quintana, B.; Martin, S.; Domingo-Pardo, C. doi  openurl
  Title Study of accuracy in the position determination with SALSA, a gamma-scanning system for the characterization of segmented HPGe detectors Type Journal Article
  Year (up) 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 823 Issue Pages 98-106  
  Keywords gamma-Camera; Virtual collimation; SAlamanca Lyso-based Scanning Array (SALSA); Segmented HPGe detectors  
  Abstract Accurate characterization of the electric response of segmented high-purity germanium (HPGe) detectors as a function of the interaction position is one of the current goals of the Nuclear Physics community seeking to perform gamma-ray tracking or even imaging with these detectors. For this purpose, scanning devices must be developed to achieve the signal-position association with the highest precision. With a view to studying the accuracy achieved with SALSA, the SAlamanca Lyso-based Scanning Array, here we report a detailed study on the uncertainty sources and their effect in the position determination inside the HPGe detector to be scanned. The optimization performed on the design of SALSA, aimed at minimizing the effect of the uncertainty sources, afforded an intrinsic uncertainty of 2 mm for large coaxial detectors and 1 mm for planar ones.  
  Address [Hernandez-Prieto, A.; Quintana, B.; Martin, S.] Univ Salamanca, Dept Fis Fundamental, Lab Radiac Ionizantes, C Espejo S-N, E-37008 Salamanca, Spain, Email: alvaro.prieto@usal.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000374661600014 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2664  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva