|   | 
Details
   web
Records
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Nonsingular black holes in quadratic Palatini gravity Type Journal Article
Year (down) 2012 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 72 Issue 8 Pages 2098 - 5pp
Keywords
Abstract We find that if general relativity is modified at the Planck scale by a Ricci-squared term, electrically charged black holes may be nonsingular. These objects concentrate their mass in a microscopic sphere of radius r(core) approximate to N(q)(1/2)l(P)/3, where l(P) is the Planck length and N-q is the number of electric charges. The singularity is avoided if the mass of the object satisfies the condition M-0(2) approximate to m(P)(2)alpha N-3/2(em)q(3)/2, where m(P) is the Planck mass and alpha(em) is the fine-structure constant. For astrophysical black holes this amount of charge is so small that their external horizon almost coincides with their Schwarzschild radius. We work within a first-order (Palatini) approach.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000308239900030 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1138
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Nonsingular Charged Black Holes A La Palatini Type Journal Article
Year (down) 2012 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 21 Issue 8 Pages 1250067 - 6pp
Keywords Extended theories of gravity; Palatini formalism; Planck scale
Abstract We argue that the quantum nature of matter and gravity should lead to a discretization of the allowed states of the matter confined in the interior of black holes. To support and illustrate this idea, we consider a quadratic extension of general relativity (GR) formulated a la Palatini and show that nonrotating, electrically charged black holes develop a compact core at the Planck density which is nonsingular if the mass spectrum satisfies a certain discreteness condition. We also find that the area of the core is proportional to the number of charges times the Planck area.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Dept Fis Teor, Fac Fis, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000308497500002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1154
Permanent link to this record
 

 
Author Martinez-Asencio, J.; Olmo, G.J.; Rubiera-Garcia, D.
Title Black hole formation from a null fluid in extended Palatini gravity Type Journal Article
Year (down) 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 10 Pages 104010 - 8pp
Keywords
Abstract We study the formation and perturbation of black holes by null fluxes of neutral matter in a quadratic extension of general relativity formulated a la Palatini. Working in a spherically symmetric space-time, we obtain an exact analytical solution for the metric that extends the usual Vaidya-type solution to this type of theory. We find that the resulting space-time is formally that of a Reissner-Nordstrom black hole but with an effective charge term carrying the wrong sign in front of it. This effective charge is directly related to the luminosity function of the radiation stream. When the ingoing flux vanishes, the charge term disappears and the space-time relaxes to that of a Schwarzschild black hole. We provide two examples that illustrate the formation of a black hole from Minkowski space and the perturbation by a finite pulse of radiation of an existing Schwarzschild black hole.
Address [Martinez-Asencio, Jesus; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000310686900007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1202
Permanent link to this record
 

 
Author Olmo, G.J.; Sanchis-Alepuz, H.; Tripathi, S.
Title Stellar structure equations in extended Palatini gravity Type Journal Article
Year (down) 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 10 Pages 104039 - 8pp
Keywords
Abstract We consider static spherically symmetric stellar configurations in Palatini theories of gravity in which the Lagrangian is an unspecified function of the form f(R, R μnu R μnu). We obtain the Tolman-Oppenheimer-Volkov equations corresponding to this class of theories and show that they recover those of f(R) theories and general relativity in the appropriate limits. We show that the exterior vacuum solutions are of Schwarzschild-de Sitter type and comment on the possible expected modifications, as compared to general relativity, of the interior solutions.
Address [Olmo, Gonzalo J.; Sanchis-Alepuz, Helios] Univ Valencia, CSIC, Fac Fis, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000311143500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1222
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J.
Title Wormholes supported by hybrid metric-Palatini gravity Type Journal Article
Year (down) 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 12 Pages 127504 - 5pp
Keywords
Abstract Recently, a modified theory of gravity was presented, which consists of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory possesses extremely interesting features such as predicting the existence of a long-range scalar field, that explains the late-time cosmic acceleration and passes the local tests, even in the presence of a light scalar field. In this brief report, we consider the possibility that wormholes are supported by this hybrid metric-Palatini gravitational theory. We present here the general conditions for wormhole solutions according to the null energy conditions at the throat and find specific examples. In the first solution, we specify the redshift function, the scalar field and choose the potential that simplifies the modified Klein-Gordon equation. This solution is not asymptotically flat and needs to be matched to a vacuum solution. In the second example, by adequately specifying the metric functions and choosing the scalar field, we find an asymptotically flat spacetime.
Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy, Email: capozzie@na.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000312446600010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1280
Permanent link to this record