|   | 
Details
   web
Records
Author Di Valentino, E.; Gariazzo, S.; Giusarma, E.; Mena, O.
Title Robustness of cosmological axion mass limits Type Journal Article
Year (down) 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 12 Pages 123505 - 12pp
Keywords
Abstract We present the cosmological bounds on the thermal axion mass in an extended cosmological scenario in which the primordial power spectrum of scalar perturbations differs from the usual power-law shape predicted by the simplest inflationary models. The power spectrum is instead modeled by means of a “piecewise cubic Hermite interpolating polynomial” (PCHIP). When using cosmic microwave background measurements combined with other cosmological data sets, the thermal axion mass constraints are degraded only slightly. The addition of the measurements of sigma(8) and Omega(m) from the 2013 Planck cluster catalog on galaxy number counts relaxes the bounds on the thermal axion mass, mildly favoring a similar to 1 eV axion mass, regardless of the model adopted for the primordial power spectrum. However, in general, such a preference disappears if the sum of the three active neutrino masses is also considered as a free parameter in our numerical analyses, due to the strong correlation between the masses of these two hot thermal relics.
Address [Di Valentino, Eleonora] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000355623400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2253
Permanent link to this record
 

 
Author Vincent, A.C.; Fernandez Martinez, E.; Hernandez, P.; Mena, O.; Lattanzi, M.
Title Revisiting cosmological bounds on sterile neutrinos Type Journal Article
Year (down) 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 006 - 23pp
Keywords particle physics – cosmology connection; cosmological neutrinos; cosmology of theories beyond the SM
Abstract We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R-CMB and the sound horizon r(s) from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin(2) theta less than or similar to 0.026(m(s)/eV)(-2).
Address [Vincent, Aaron C.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England, Email: aaron.vincent@durham.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000355742500007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2261
Permanent link to this record
 

 
Author Gariazzo, S.; Lopez-Honorez, L.; Mena, O.
Title Primordial power spectrum features and f(NL) constraints Type Journal Article
Year (down) 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 92 Issue 6 Pages 063510 - 12pp
Keywords
Abstract The simplest models of inflation predict small non-Gaussianities and a featureless power spectrum. However, there exist a large number of well-motivated theoretical scenarios in which large non-Gaussianties could be generated. In general, in these scenarios the primordial power spectrum will deviate from its standard power law shape. We study, in a model-independent manner, the constraints from future large-scale structure surveys on the local non-Gaussianity parameter f(NL) when the standard power law assumption for the primordial power spectrum is relaxed. If the analyses are restricted to the large-scale-dependent bias induced in the linear matter power spectrum by non-Gaussianites, the errors on the f(NL) parameter could be increased by 60% when exploiting data from the future DESI survey, if dealing with only one possible dark matter tracer. In the same context, a nontrivial bias vertical bar delta f(NL)vertical bar similar to 2.5 could be induced if future data are fitted to the wrong primordial power spectrum. Combining all the possible DESI objects slightly ameliorates the problem, as the forecasted errors on f(NL) would be degraded by 40% when relaxing the assumptions concerning the primordial power spectrum shape. Also, the shift on the non-Gaussianity parameter is reduced in this case, vertical bar delta f(NL)vertical bar similar to 1.6. The addition of cosmic microwave background priors ensures robust future f(NL) bounds, as the forecasted errors obtained including these measurements are almost independent on the primordial power spectrum features, and vertical bar delta f(NL)vertical bar similar to 0.2, close to the standard single-field slow-roll paradigm prediction.
Address [Gariazzo, Stefano] Univ Turin, Dept Phys, I-10125 Turin, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000360886300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2382
Permanent link to this record
 

 
Author Escudero, M.; Mena, O.; Vincent, A.C.; Wilkinson, R.J.; Boehm, C.
Title Exploring dark matter microphysics with galaxy surveys Type Journal Article
Year (down) 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 034 - 16pp
Keywords dark matter theory; galaxy surveys; cosmological parameters from CMBR
Abstract We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ACDM scenario. To quantify this statement, we focus on an extension of ACDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.
Address [Escudero, Miguel; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: miguel.Escudero@uv.s;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365690000034 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2480
Permanent link to this record
 

 
Author Diamanti, R.; Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Vincent, A.C.
Title Constraining dark matter late-time energy injection: decays and p-wave annihilations Type Journal Article
Year (down) 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 017 - 24pp
Keywords dark matter theory; CMBR theory
Abstract We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts (z less than or similar to 50) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman-alpha measurements of the matter temperature at z similar to 4 to set a 95% confidence level lower bound on the dark matter lifetime of similar to 4 x 10(25) s for m(chi) = 100 MeV. This bound becomes lower by an order of magnitude at m(chi) = 1 TeV due to inefficient energy deposition into the inter-galactic medium. We also show that structure formation can enhance the effect of p-wave suppressed annihilation cross sections by many orders of magnitude with respect to the background cosmological rate, although even with this enhancement, CMB constraints are not yet strong enough to reach the thermal relic value of the cross section.
Address [Diamanti, Roberta; Mena, Olga; Palomares-Ruiz, Sergio; Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: R.Diamanti@uva.nl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000332711400017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1732
Permanent link to this record