|   | 
Details
   web
Records
Author Barenboim, G.; Salvado, J.
Title Cosmology and CPT violating neutrinos Type Journal Article
Year (down) 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 11 Pages 766 - 18pp
Keywords
Abstract The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000415376100002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3378
Permanent link to this record
 

 
Author Bai, Y.; Lu, R.; Lu, S.D.; Salvado, J.; Stefanek, B.A.
Title Three twin neutrinos: Evidence from LSND and MiniBooNE Type Journal Article
Year (down) 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 93 Issue 7 Pages 073004 - 11pp
Keywords
Abstract We construct a neutrino model of three twin neutrinos in light of the neutrino appearance excesses at LSND and MiniBooNE. The model, which includes a twin parity, naturally predicts identical lepton Yukawa structures in the Standard Model and the twin sectors. As a result, a universal mixing angle controls all three twin neutrino couplings to the Standard Model charged leptons. This mixing angle is predicted to be the ratio of the electroweak scale over the composite scale of the Higgs boson and has the right order of magnitude to fit the data. The heavy twin neutrinos decay within the experimental lengths into active neutrinos plus a long-lived Majoron and can provide a good fit, at around the 4 sigma confidence level, to the LSND and MiniBooNE appearance data while simultaneously satisfying the disappearance constraints. For the Majorana neutrino case, the fact that neutrinos have a larger scattering cross section than antineutrinos provides a natural explanation to MiniBooNE's observation of a larger antineutrino appearance excess.
Address [Bai, Yang; Lu, Ran; Lu, Sida; Stefanek, Ben A.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000373581900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2616
Permanent link to this record
 

 
Author IceCube Collaboration (Aartsen, M.G. et al); Salvado, J.
Title Searches for Sterile Neutrinos with the IceCube Detector Type Journal Article
Year (down) 2016 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 117 Issue 7 Pages 071801 - 9pp
Keywords
Abstract The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous nu(mu) or (nu) over bar (mu) disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3 + 1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin(2)2 theta(24) <= 0.02 at Delta m(2) similar to 0.3 eV(2) at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of vertical bar U-e4 vertical bar(2).
Address [Auffenberg, J.; Leuermann, M.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000381477200004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2779
Permanent link to this record
 

 
Author Hernandez, P.; Kekic, M.; Lopez-Pavon, J.; Racker, J.; Salvado, J.
Title Testable baryogenesis is in seesaw models Type Journal Article
Year (down) 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 157 - 29pp
Keywords Cosmology of Theories beyond the SM; CP violation; Neutrino Physics; Beyond Standard Model
Abstract We revisit the production of baryon asymmetries in the minimal type I seesaw model with heavy Majorana singlets in the GeV range. In particular we include “washout” effects from scattering processes with gauge bosons, Higgs decays and inverse decays, besides the dominant top scatterings. We show that in the minimal model with two singlets, and for an inverted light neutrino ordering, future measurements from SHiP and neutrinoless double beta decay could in principle provide sufficient information to predict the matter-antimatter asymmetry in the universe. We also show that SHiP measurements could provide very valuable information on the PMNS CP phases.
Address [Hernandez, P.; Kekic, M.; Racker, J.; Salvado, J.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: m.pilar.hernandez@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000382398000004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2787
Permanent link to this record