toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sandner, S.; Escudero, M.; Witte, S.J. url  doi
openurl 
  Title Precision CMB constraints on eV-scale bosons coupled to neutrinos Type Journal Article
  Year (down) 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 8 Pages 709 - 12pp  
  Keywords  
  Abstract The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalizewith neutrinos via the inverse decay process, v (v) over bar -> X, and suppress neutrino free streaming near recombination – even for couplings as small as lambda(v) similar to O(10(-13)). Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either N-int = 1, 2 or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivatedmodels, such as the singlet majoron model or a light U(1) L-mu- L-t gauge boson, and find that they represent the leading constraints for masses m(X) similar to 1 eV. Finally, we revisit the extent to which neutrinophilic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.  
  Address [Sandner, Stefan] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001045200700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5608  
Permanent link to this record
 

 
Author Utrilla Gines, E.; Mena, O.; Witte, S.J. url  doi
openurl 
  Title Revisiting constraints on WIMPs around primordial black holes Type Journal Article
  Year (down) 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 6 Pages 063538 - 14pp  
  Keywords  
  Abstract While primordial black holes (PBHs) with masses MPBH greater than or similar to 10-11 Mo cannot comprise the entirety of dark matter, the existence of even a small population of these objects can have profound astrophysical consequences. A subdominant population of PBHs will efficiently accrete dark matter particles before matter-radiation equality, giving rise to high-density dark matter spikes. We consider here the scenario in which dark matter is comprised primarily of weakly interacting massive particles (WIMPs) with a small subdominant contribution coming from PBHs, and revisit the constraints on the annihilation of WIMPs in these spikes using observations of the isotropic gamma-ray background (IGRB) and the cosmic microwave background (CMB), for a range of WIMP masses, annihilation channels, cross sections, and PBH mass functions. We find that the constraints derived using the IGRB have been significantly overestimated (in some cases by many orders of magnitude), and that limits obtained using observations of the CMB are typically stronger than, or comparable to, those coming from the IGRB. Importantly, we show that similar to OoMo thorn PBHs can still contribute significantly to the dark matter density for sufficiently low WIMP masses and p-wave annihilation cross sections.  
  Address [Utrilla Gines, Estanis; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Parc Cient UV,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000866519600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5390  
Permanent link to this record
 

 
Author Muñoz, V.; Takhistov, V.; Witte, S.J.; Fuller, G.M. url  doi
openurl 
  Title Exploring the origin of supermassive black holes with coherent neutrino scattering Type Journal Article
  Year (down) 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 020 - 16pp  
  Keywords dark matter detectors; massive stars; neutrino astronomy; neutrino detectors  
  Abstract Collapsing supermassive stars (M greater than or similar to 3 x 10(4) M-circle dot) at high redshifts can naturally provide seeds and explain the origin of the supermassive black holes observed in the centers of nearly all galaxies. During the collapse of supermassive stars, a burst of non-thermal neutrinos is generated with a luminosity that could greatly exceed that of a conventional core collapse supernova explosion. In this work, we investigate the extent to which the neutrinos produced in these explosions can be observed via coherent elastic neutrino-nucleus scattering (CEvNS). Large scale direct dark matter detection experiments provide particularly favorable targets. We find that upcoming O(100) tonne-scale experiments will be sensitive to the collapse of individual supermassive stars at distances as large as O(10) Mpc.  
  Address [Munoz, Victor; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: victor.manuel.munoz@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000765985200009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5159  
Permanent link to this record
 

 
Author Raj, N.; Takhistov, V.; Witte, S.J. url  doi
openurl 
  Title Presupernova neutrinos in large dark matter direct detection experiments Type Journal Article
  Year (down) 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 4 Pages 043008 - 10pp  
  Keywords  
  Abstract The next Galactic core-collapse supernova (SN) is a highly anticipated observational target for neutrino telescopes. However, even prior to collapse, massive dying stars shine copiously in “pre-supernova” (pre-SN) neutrinos, which can potentially act as efficient SN warning alarms and provide novel information about the very last stages of stellar evolution. We explore the sensitivity to pre-SN neutrinos of large-scale direct dark matter detection experiments, which, unlike dedicated neutrino telescopes, take full advantage of coherent neutrino-nucleus scattering. We find that argon-based detectors with target masses of O(100)tons (i.e., comparable in size to the proposed ARGO experiment) operating at sub-keV thresholds can detect O(10-100) pre-SN neutrinos coming from a source at a characteristic distance of similar to 200 pc, such as Betelgeuse (alpha Orionis). Large-scale xenon-based experiments with similarly low thresholds could also be sensitive to pre-SN neutrinos. For a Betelgeuse-type source, large-scale dark matter experiments could provide a SN warning siren similar to 10 hours prior to the explosion. We also comment on the complementarity of large-scale direct dark matter detection experiments and neutrino telescopes in the understanding of core-collapse SN.  
  Address [Raj, Nirmal] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada, Email: nraj@triumf.ca;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513575900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4285  
Permanent link to this record
 

 
Author McDermott, S.D.; Witte, S.J. url  doi
openurl 
  Title Cosmological evolution of light dark photon dark matter Type Journal Article
  Year (down) 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 6 Pages 063030 - 14pp  
  Keywords  
  Abstract Light dark photons are subject to various plasma effects, such as Debye screening and resonant oscillations, which can lead to a more complex cosmological evolution than is experienced by conventional cold dark matter candidates. Maintaining a consistent history of dark photon dark matter requires ensuring that the superthennal abundance present in the early Universe (i) does not deviate significantly after the formation of the cosmic microwave background (CMB), and (ii) does not excessively leak into the Standard Model plasma after big band nucleosynthesis (BBN). We point out that the role of nonresonant absorption, which has previously been neglected in cosmological studies of this dark matter candidate, produces strong constraints on dark photon dark matter with mass as low as 10(-22) eV. Furthermore, we show that resonant conversion of dark photons after recombination can produce excessive heating of the intergalactic medium (IGM) which is capable of prematurely reionizing hydrogen and helium, leaving a distinct imprint on both the Ly-a forest and the integrated optical depth of the CMB. Our constraints surpass existing cosmological bounds by more than 5 orders of magnitude across a wide range of dark photon masses.  
  Address [McDermott, Samuel D.] Fermilab Natl Accelerator Lab, Theoret Astrophys Grp, POB 500, Batavia, IL 60510 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000522168800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4346  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva