toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ding, G.J.; Lu, J.N.; Valle, J.W.F. url  doi
openurl 
  Title Trimaximal neutrino mixing from scotogenic A(4) family symmetry Type Journal Article
  Year (down) 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 815 Issue Pages 136122 - 13pp  
  Keywords  
  Abstract We propose a flavor theory of leptons implementing an A(4) family symmetry. Our scheme provides a simple way to derive trimaximal neutrino mixing from first principles, leading to simple and testable predictions for neutrino mixing and CP violation. Dark matter mediates neutrino mass generation, as in the simplest scotogenic model.  
  Address [Ding, Gui-Jun] Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China, Email: dinggj@ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000632729200019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4778  
Permanent link to this record
 

 
Author Lu, J.N.; Liu, X.G.; Ding, G.J. url  doi
openurl 
  Title Modular symmetry origin of texture zeros and quark-lepton unification Type Journal Article
  Year (down) 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 11 Pages 115020 - 27pp  
  Keywords  
  Abstract The even-weight modular forms of level N can be arranged into the common irreducible representations of the inhomogeneous finite modular group Gamma(N) and the homogeneous finite modular group Gamma(N)' which is the double covering of Gamma(N) , and the odd-weight modular forms of level N transform in the new representations of Gamma(N)'. We find that the above structure of modular forms can naturally generate texture zeros of the fermion mass matrices if we properly assign the representations and weights of the matter fields under the modular group. We perform a comprehensive analysis for the Gamma(3)' congruent to T' modular symmetry. The three generations of left-handed quarks are assumed to transform as a doublet and a singlet of T', and we find six possible texture-zero structures of the quark mass matrix up to row and column permutations. We present five benchmark quark models which can produce very good fits to the experimental data. These quark models are further extended to include the lepton sector, and the resulting models can give a unified description of both quark and lepton masses and flavor mixing simultaneously, although they contain a smaller number of free parameters than the observables.  
  Address [Lu, Jun-Nan; Liu, Xiang-Gan; Ding, Gui-Jun] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China, Email: hitman@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000540658300007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4434  
Permanent link to this record
 

 
Author Chen, P.; Ding, G.J.; Lu, J.N.; Valle, J.W.F. url  doi
openurl 
  Title Predictions from warped flavor dynamics based on the T ' family group Type Journal Article
  Year (down) 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 9 Pages 095014 - 17pp  
  Keywords  
  Abstract We propose a realistic theory of fermion masses and mixings using a five-dimensional warped scenario where all fermions propagate in the bulk and the Higgs field is localized on the IR bran. The assumed T' flavor symmetry is broken on the branes by flavon fields, providing a consistent scenario where fermion mass hierarchies arise from adequate choices of the bulk mass parameters, while quark and lepton mixing angles are restricted by the family symmetry. Neutrino mass splittings, mixing parameters and the Dirac CP phase all arise from the type-I seesaw mechanism and are tightly correlated, leading to predictions for the neutrino oscillation parameters, as well as expected 0 nu beta beta decay rates within reach of upcoming experiments. The scheme also provides a good global description of flavor observables in the quark sector.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000589907700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4610  
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I Type Journal Article
  Year (down) 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 036 - 27pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract We analyze the possible generalized CP symmetries admitted by the Tri-Bi-Maximal (TBM) neutrino mixing. Taking advantage of these symmetries we construct in a systematic way other variants of the standard TBM Ansatz. Depending on the type and number of generalized CP symmetries imposed, we get new mixing matrices, all of which related to the original TBM matrix. One of such revamped TBM variants is the recently discussed mixing matrix of arXiv:1806.03367. We also briefly discuss the phenomenological implications following from these mixing patterns.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460751400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3941  
Permanent link to this record
 

 
Author Chen, P.; Ding, G.J.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Predicting neutrino oscillations with “bi-large” lepton mixing matrices Type Journal Article
  Year (down) 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 792 Issue Pages 461-464  
  Keywords  
  Abstract We propose two schemes for the lepton mixing matrix U = (U1U nu)-U-dagger, where U = U-1 refers to the charged sector, and U-v denotes the neutrino diagonalization matrix. We assume U-nu to be CP conserving and its three angles to be connected with the Cabibbo angle in a simple manner. CP violation arises solely from the U-1, assumed to have the CKM form, U-1 similar or equal to V-CKM, suggested by unification. Oscillation parameters depend on a single parameter, leading to narrow ranges for the “solar” and “accelerator” angles theta(12) and theta(23), as well as for the CP phase, predicted as delta(CP) similar to +/- 1.3 pi.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000466802100066 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4000  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva