Benso, C., Schwetz, T., & Vatsyayan, D. (2025). Large neutrino mass in cosmology and keV sterile neutrino dark matter from a dark sector. J. Cosmol. Astropart. Phys., 04(4), 054–32pp.
Abstract: We consider an extended seesaw model which generates active neutrino masses via the usual type-I seesaw and leads to a large number of massless fermions as well as a sterile neutrino dark matter (DM) candidate in the O(10-100) keV mass range. The dark sector comes into thermal equilibrium with Standard Model neutrinos after neutrino decoupling and before recombination via a U(1) gauge interaction in the dark sector. This suppresses the abundance of active neutrinos and therefore reconciles sizeable neutrino masses with cosmology. The DM abundance is determined by freeze-out in the dark sector, which allows avoiding bounds from X-ray searches. Our scenario predicts a slight increase in the effective number of neutrino species Neff at recombination, potentially detectable by future CMB missions.
|
Bhattacharya, S., Mondal, N., Roshan, R., & Vatsyayan, D. (2024). Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking. J. Cosmol. Astropart. Phys., 06(6), 029–25pp.
Abstract: We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.
|
Giarnetti, A., Herrero-Garcia, J., Marciano, S., Meloni, D., & Vatsyayan, D. (2024). Neutrino masses from new Weinberg-like operators: phenomenology of TeV scalar multiplets. J. High Energy Phys., 05(5), 055–37pp.
Abstract: The unique dimension-5 effective operator, LLHH, known as the Weinberg operator, generates tiny Majorana masses for neutrinos after electroweak spontaneous symmetry breaking. If there are new scalar multiplets that take vacuum expectation values (VEVs), they should not be far from the electroweak scale. Consequently, they may generate new dimension-5 Weinberg-like operators which in turn also contribute to Majorana neutrino masses. In this study, we consider scenarios with one or two new scalars up to quintuplet SU(2) representations. We analyse the scalar potentials, studying whether the new VEVs can be induced and therefore are naturally suppressed, as well as the potential existence of pseudo-Nambu-Goldstone bosons. Additionally, we also obtain general limits on the new scalar multiplets from direct searches at colliders, loop corrections to electroweak precision tests and the W-boson mass.
|
Giarnetti, A., Herrero-Garcia, J., Marciano, S., Meloni, D., & Vatsyayan, D. (2024). Neutrino masses from new seesaw models: low-scale variants and phenomenological implications. Eur. Phys. J. C, 84(8), 803–19pp.
Abstract: With just the Standard Model Higgs doublet, there are only three types of seesaw models that generate light Majorana neutrino masses at tree level after electroweak spontaneous symmetry breaking. However, if there exist additional TeV scalars acquiring vacuum expectation values, coupled with heavier fermionic multiplets, several new seesaw models become possible. These new seesaws are the primary focus of this study and correspond to the tree-level ultraviolet completions of the effective operators studied in a companion publication. We are interested in the genuine cases, in which the standard seesaw contributions are absent. In addition to the tree-level generation of neutrino masses, we also consider the one-loop contributions. Furthermore, we construct low-energy versions that exhibit a very rich phenomenology. Specifically, we scrutinise the generation of dimension-6 operators and explore their implications, including non-unitarity of the leptonic mixing matrix, non-universal Z-boson interactions, and lepton flavor violation. Finally, we provide (Generalised) Scotogenic-like variants that incorporate viable dark matter candidates.
|
Rochman, D. et al, & Algora, A. (2024). An introduction to Spent Nuclear Fuel decay heat for Light Water Reactors: a review from the NEA WPNCS. EPJ Nucl. Sci. Technol., 10, 9–83pp.
Abstract: This paper summarized the efforts performed to understand decay heat estimation from existing spent nuclear fuel (SNF), under the auspices of the Working Party on Nuclear Criticality Safety (WPNCS) of the OECD Nuclear Energy Agency. Needs for precise estimations are related to safety, cost, and optimization of SNF handling, storage, and repository. The physical origins of decay heat (a more correct denomination would be decay power) are then introduced, to identify its main contributors (fission products and actinides) and time-dependent evolution. Due to limited absolute prediction capabilities, experimental information is crucial; measurement facilities and methods are then presented, highlighting both their relevance and our need for maintaining the unique current full-scale facility and developing new ones. The third part of this report is dedicated to the computational aspect of the decay heat estimation: calculation methods, codes, and validation. Different approaches and implementations currently exist for these three aspects, directly impacting our capabilities to predict decay heat and to inform decision-makers. Finally, recommendations from the expert community are proposed, potentially guiding future experimental and computational developments. One of the most important outcomes of this work is the consensus among participants on the need to reduce biases and uncertainties for the estimated SNF decay heat. If it is agreed that uncertainties (being one standard deviation) are on average small (less than a few percent), they still substantially impact various applications when one needs to consider up to three standard deviations, thus covering more than 95% of cases. The second main finding is the need of new decay heat measurements and validation for cases corresponding to more modern fuel characteristics: higher initial enrichment, higher average burnup, as well as shorter and longer cooling time. Similar needs exist for fuel types without public experimental data, such as MOX, VVER, or CANDU fuels. A third outcome is related to SNF assemblies for which no direct validation can be performed, representing the vast majority of cases (due to the large number of SNF assemblies currently stored, or too short or too long cooling periods of interest). A few solutions are possible, depending on the application. For the final repository, systematic measurements of quantities related to decay heat can be performed, such as neutron or gamma emission. This would provide indications of the SNF decay heat at the time of encapsulation. For other applications (short- or long-term cooling), the community would benefit from applying consistent and accepted recommendations on calculation methods, for both decay heat and uncertainties. This would improve the understanding of the results and make comparisons easier.
|