|   | 
Details
   web
Records
Author Diel, F.; Fujita, Y.; Fujita, H.; Cappuzzello, F.; Ganioglu, E.; Grewe, E.W.; Hashimoto, T.; Hatanaka, K.; Honma, M.; Itoh, T.; Jolie, J.; Liu, B.; Otsuka, T.; Takahisa, K.; Susoy, G.; Rubio, B.; Tamii, A.
Title High-resolution study of the Gamow-Teller (GT_) strength in the Zn-64(He-3, t) Ga-64 reaction Type Journal Article
Year (up) 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 5 Pages 054322 - 10pp
Keywords
Abstract Gamow-Teller (GT) transitions starting from the T-z = +2 nucleus Zn-64 to the T-z = +1 nucleus Ga-64 were studied in a (p, n)-type (He-3,t) charge-exchange reaction at a beam energy of 140 MeV/nucleon and scattering angles close to 0 degrees. Here, T-z is the z component of the isospin T. The experiment was conducted at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. An energy resolution of approximate to 34 keV was achieved by applying beam matching techniques to the Grand Raiden magnetic spectrometer system. With our good resolution, we could observe GT strength fragmented in many states up to an excitation energy of approximate to 11 MeV. By performing angular distribution analysis, we could identify states in Ga-64 excited by GT transitions. The reduced GT transition strengths [B(GT)values] were calculated assuming the proportionality between the cross sections and the B(GT)values. Shell-model calculations using the GXPF1J interaction reproduced the B(GT)strength distribution throughout the spectrum. States with isospin T = 3 were identified by comparing the Zn-64(He-3,t)Ga-64 spectrum with a Zn-64(d, He-2)Cu-64 spectrum. Relative excitation energies of the corresponding structures are in good agreement, supporting the robustness of isospin symmetry in the mass number A = 64 nuclei.
Address [Diel, F.; Jolie, J.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: fdiel@ikp.uni-koeln.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000469018000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4026
Permanent link to this record
 

 
Author Watanabe, H.; Watanabe, Y.X.; Hirayama, Y.; Andreyev, A.N.; Hashimoto, T.; Kondev, F.G.; Lane, G.J.; Litvinov, Y.A.; Liu, J.J.; Miyatake, H.; Moon, J.Y.; Morales, A.I.; Mukai, M.; Nishimura, S.; Niwase, T.; Rosenbusch, M.; Schury, P.; Shi, Y.; Wada, M.; Walker, P.M.
Title Beta decay of the axially asymmetric ground state of Re-192 Type Journal Article
Year (up) 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 814 Issue Pages 136088 - 6pp
Keywords Re-192; beta decay; Axial asymmetry; Shape transition
Abstract The beta decay of Re-192(75)117, which lies near the boundary between the regions of predicted prolate and oblate deformations, has been investigated using the KEK Isotope Separation System (KISS) in RIKEN Nishina Center. This is the first case in which a low-energy beam of rhenium isotope has been successfully extracted from an argon gas-stopping cell using a laser-ionization technique, following production via multi-nucleon transfer between heavy ions. The ground state of Re-192 has been assigned J(pi) = (0(-)) based on the observed beta feedings and deduced logf t values towards the 0(+) and 2(+) states in Os-192, which is known as a typical gamma-soft nucleus. The shape transition from axial symmetry to axial asymmetry in the Re isotopes is discussed from the viewpoint of single-particle structure using the nuclear Skyrme-Hartree-Fock model.
Address [Watanabe, H.] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000621722300008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4747
Permanent link to this record