|   | 
Details
   web
Records
Author Perez, A.; Romanelli, A.
Title Spatially Dependent Decoherence and Anomalous Diffussion of Quantum Walks Type Journal Article
Year (up) 2013 Publication Journal of Computational and Theoretical Nanoscience Abbreviated Journal J. Comput. Theor. Nanosci.
Volume 10 Issue 7 Pages 1591-1595
Keywords Decoherence; Quantum Walk; Non-Translational Invariance
Abstract We analyze the long time behavior of a discrete time quantum walk subject to decoherence with a strong spatial dependence, acting on one half of the lattice. We show that, except for limiting cases on the decoherence parameter, the quantum walk at late times behaves sub-ballistically, meaning that the characteristic features of the quantum walk are not completely spoiled. Contrarily to expectations, the asymptotic behavior is non Markovian, and depends on the amount of decoherence. This feature can be clearly shown on the long time value of the Generalized Chiral Distribution (GCD).
Address [Perez, A.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Amer Scientific Publishers Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1546-1955 ISBN Medium
Area Expedition Conference
Notes WOS:000322605800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1528
Permanent link to this record
 

 
Author Arnault, P.; Macquet, A.; Angles-Castillo, A.; Marquez-Martin, I.; Pina-Canelles, V.; Perez, A.; Di Molfetta, G.; Arrighi, P.; Debbasch, F.
Title Quantum simulation of quantum relativistic diffusion via quantum walks Type Journal Article
Year (up) 2020 Publication Journal of Physics A Abbreviated Journal J. Phys. A
Volume 53 Issue 20 Pages 205303 - 39pp
Keywords noisy quantum walks; noisy quantum systems; decoherence; Lindblad equation; quantum simulation; relativistic diffusions; telegraph equation
Abstract Two models are first presented, of a one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin unitaries. It is then shown that both these models admit a common limit in the spacetime continuum, namely, a Lindblad equation with Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality flip and a chirality-dependent phase flip, which are two of the three standard error channels for a two-level quantum system. This, as one may call it, Dirac Lindblad equation, provides a model of quantum relativistic spatial diffusion, which is evidenced both analytically and numerically. This model of spatial diffusion has the intriguing specificity of making sense only with original unitary models which are relativistic in the sense that they have chirality, on which the noise is introduced: the diffusion arises via the by-construction (quantum) coupling of chirality to the position. For a particle with vanishing mass, the model of quantum relativistic diffusion introduced in the present work, reduces to the well-known telegraph equation, which yields propagation at short times, diffusion at long times, and exhibits no quantumness. Finally, the results are extended to temporal noises which depend smoothly on position.
Address [Arnault, Pablo; Angles-Castillo, Andreu; Marquez-Martin, Ivan; Pina-Canelles, Vicente; Perez, Armando; Di Molfetta, Giuseppe] Univ Valencia, Dept Fis Teor, Dr Moliner 50, Burjassot 46100, Spain, Email: pablo.arnault@ic.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1751-8113 ISBN Medium
Area Expedition Conference
Notes WOS:000531359000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4390
Permanent link to this record