toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Silva, J.E.G.; Maluf, R.V.; Olmo, G.J.; Almeida, C.A.S. url  doi
openurl 
  Title Braneworlds in f(Q) gravity Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 106 Issue 2 Pages 024033 - 15pp  
  Keywords  
  Abstract We propose a braneworld scenario in a modified symmetric teleparallel gravitational theory, where the dynamics for the gravitational field is encoded in the nonmetricity tensor rather than in the curvature. Assuming a single real scalar field with a sine-Gordon self-interaction, the generalized quadratic nonmetricity invariant Q controls the brane width while keeping the shape of the energy density. By considering power corrections of the invariant Q in the gravitational Lagrangian, the sine-Gordon potential is modified exhibiting new barriers and false vacuum. As a result, the domain wall brane obtains an inner structure, and it undergoes a splitting process. In addition, we also propose a nonminimal coupling between a bulk fermion field and the nonmetricity invariant Q. Such geometric coupling leads to a massless chiral fermion bound to the 3-brane and a stable tower of nonlocalized massive states.  
  Address [Silva, J. E. G.] Univ Fed do Cariri UFCA, Ave Tenente Raimundo Rocha,Cidade Universitaria, BR-63048080 Juazeiro do Norte, CE, Brazil, Email: euclides.silva@ufca.edu.br;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000880673200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5410  
Permanent link to this record
 

 
Author Esteban, I.; Mena, O.; Salvado, J. url  doi
openurl 
  Title Nonstandard neutrino cosmology dilutes the lensing anomaly Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 106 Issue 8 Pages 083516 - 9pp  
  Keywords  
  Abstract Despite the impressive success of the standard cosmological model, several anomalies defy its triumph. Among them is the so-called lensing anomaly: The Planck satellite observes stronger cosmic microwave background (CMB) gravitational lensing than expected. The role of neutrinos in this anomaly has been mostly overlooked, despite their key role in CMB lensing, because in the standard scenario they tend to increase the tension. Here, we show that this strongly depends on the assumed neutrino equation of state. We demonstrate that if neutrinos have yet undiscovered long-range interactions, the lensing pattern is significantly affected, rendering the lensing anomaly as a statistical fluctuation. Our results, thus, open up a window to link anomalous CMB lensing with present and future cosmological, astrophysical, and laboratory measurements of neutrino properties.  
  Address [Esteban, Ivan] Ohio State Univ, Ctr Cosmol & AstroParticle Phys CCAPP, Columbus, OH 43210 USA, Email: esteban.6@osu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000886611900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5415  
Permanent link to this record
 

 
Author Winney, D.; Pilloni, A.; Mathieu, V.; Hiller Blin, A.N.; Albaladejo, M.; Smith, W.A.; Szczepaniak, A. url  doi
openurl 
  Title XYZ spectroscopy at electron-hadron facilities. II. Semi-inclusive processes with pion exchange Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 106 Issue 9 Pages 094009 - 13pp  
  Keywords  
  Abstract Semi-inclusive processes arc very promising to investigate XYZ hadrons at the next generation of electron-hadron facilities, because they generally boast higher cross sections. We extend our formalism of exclusive photoproduction to semi-inclusive final states. The inclusive production cross sections for charged axial-vector Z states from pion exchange are predicted. We isolate the contribution of Delta resonances at small missing mass. Production near threshold is shown to be enhanced roughly by a factor of two compared to the exclusive reaction. We benchmark the model with data of semi-inclusive b(1)(+/-) production.  
  Address [Winney, D.] South China Normal Univ, Inst Quantum Matter, Guangdong Prov Key Lab Nucl Sci, Guangzhou 510006, Peoples R China, Email: dwinney@scnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000884458600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5421  
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Establishing the heavy quark spin and light flavor molecular multiplets of the X(3872), Z(c)(3900), and X(3960) br Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 106 Issue 9 Pages 094002 - 13pp  
  Keywords  
  Abstract Recently, the LHCb Collaboration reported a near-threshold enhancement X(3960) in the D+sD-s invariant mass distribution. We show that the data can be well described by either a bound or a virtual state below the D+sD-s threshold. The mass given by the pole position is (3928 +/- 3) MeV. Using this mass and the existing information on the X(3872) and Zc(3900) resonances, a complete spectrum of the S-wave hadronic molecules formed by a pair of ground state charmed and anticharmed mesons is established. Thus, pole positions of the partners of the X(3872) , Zc(3900) , and the newly observed D+sD-s state are predicted. Calculations have been carried out at the leading order of nonrelativistic effective field theory and considering both heavy quark spin and light flavor SU(3) symmetries, though conservative errors from the breaking of these symmetries are provided.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000886709000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5428  
Permanent link to this record
 

 
Author Ramalho, M.; Suhonen, J.; Kostensalo, J.; Alcala, G.A.; Algora, A.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.A. doi  openurl
  Title Analysis of the total beta-electron spectrum of( 92)Rb: Implications for the reactor flux anomalies Type Journal Article
  Year 2022 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 106 Issue 2 Pages 024315 - 7pp  
  Keywords  
  Abstract We present here a microscopic nuclear-structure calculation of a beta-electron spectrum including all the beta-decay branches of a high Q-value reactor fission product contributing significantly to the reactor antineutrino energy spectrum. We perform large-scale nuclear shell-model calculations of the total electron spectrum for the beta(-) decay of Rb-92 to states in Sr-92 using a computer cluster. We exploit the beta-branching data of a recent total absorption gamma-ray spectroscopy (TAGS) measurement to determine the effective values of the weak axial-vector coupling, g(A), and the weak axial charge, g(A)(gamma(5)). By using the TAGS data we avoid the bias stemming from the pandemonium effect which is a systematic error biasing the usual beta-decay measurements. We take fully into account all the involved allowed and forbidden beta transitions, in particular the first-forbidden nonunique ones which have earlier been shown to be relevant in the context of the reactor-antineutrino flux anomaly and the unexplained spectral shoulder, the “bump,” the former one having been interpreted as one of the strongest evidence for the existence of sterile neutrinos. Here we are able to present quantitative evidence for the relevance of forbidden nonunique beta(-) decays in a total beta spectrum of a fission product, in this case( 92)Rb, which is one of the major contributors to the total reactor antineutrino spectral shape. We demonstrate that taking the forbidden spectral shapes fully into consideration leads for Rb-92 to a 2.6%-4.6% reduction in the expected inverse beta-decay rate at the reactor antineutrino telescopes. We also confirm by our calculation of a total beta-electron spectrum that the forbidden transitions can contribute to the formation of the spectral bump in the reactor-antineutrino flux profile.  
  Address [Ramalho, M.; Suhonen, J.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland, Email: madeoliv@jyu.fi;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000889134200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5429  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva