toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Amplitude Analysis of the Decay (B)over-bar(0 )-> K-S(0)pi(+)pi(- )and First Observation of the CP Asymmetry in (B)over-bar(0 )-> K* (892)(-)pi(+) Type Journal Article
  Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume (down) 120 Issue 26 Pages 261801 - 10pp  
  Keywords  
  Abstract The time-integrated untagged Dalitz plot of the three-body hadronic charmless decay (B) over bar (0 )-> K-S(0)pi(+)pi(- ) is studied using a pp collision data sample recorded with the LHCb detector, corresponding to an integrated luminosity of 3.0 fb(-1). The decay amplitude is described with an isobar model. Relative contributions of the isobar amplitudes to the (B) over bar (0 )-> K-S(0)pi(+)pi(- ) decay branching fraction and CP asymmetries of the flavor-specific amplitudes are measured. The CP asymmetry between the conjugate (B) over bar (0 )-> K* (892)(-)pi(+) and (B) over bar (0 )-> K* (892)(-)pi(+) decay rates is determined to be -0.308 +/- 0.062.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Rodriguez, J. Molina; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Soares Lavra, I.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436196800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3640  
Permanent link to this record
 

 
Author Alvarez-Ruso, L. et al; Nieves, J. url  doi
openurl 
  Title NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering Type Journal Article
  Year 2018 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.  
  Volume (down) 100 Issue Pages 1-68  
  Keywords Neutrino; Nucleus; Scattering; Nuclear; Model; Oscillations  
  Abstract The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process – from quasi-elastic to deep inelastic scattering – is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.  
  Address [Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: morfin@fnal.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-6410 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000430618800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3569  
Permanent link to this record
 

 
Author Aguilar, A.C.; Cardona, J.C.; Ferreira, M.N.; Papavassiliou, J. url  doi
openurl 
  Title Quark gap equation with non-Abelian Ball-Chiu vertex Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume (down) 98 Issue 1 Pages 014002 - 15pp  
  Keywords  
  Abstract The full quark-gluon vertex is a crucial ingredient for the dynamical generation of a constituent quark mass from the standard quark gap equation, and its nontransverse part may be determined exactly from the nonlinear Slav nov-Taylor identity that it satisfies. The resulting expression involves not only the quark propagator, but also the ghost dressing function and the quark-ghost kernel, and constitutes the non-abelian extension of the so-called “Ball-Chiu vertex,” known from QED. In the present work we carry out a detailed study of the impact of this vertex on the gap equation and the quark masses generated from it, putting particular emphasis on the contributions directly related with the ghost sector of the theory, and especially the quark-ghost kernel. In particular, we set up and solve the coupled system of six equations that determine the four form factors of the latter kernel and the two typical Dirac structures composing the quark propagator. Due to the incomplete implementation of the multiplicative renormalizability at the level of the gap equation, the correct anomalous dimension of the quark mass is recovered through the inclusion of a certain function, whose ultraviolet behavior is fixed, but its infrared completion is unknown; three particular Ansatze for this function are considered, and their effect on the quark mass and the pion decay constant is explored. The main results of this study indicate that the numerical impact of the quark-ghost kernel is considerable; the transition from a tree-level kernel to the one computed hem leads to a 20% increase in the value of the quark mass at the origin. Particularly interesting is the contribution of the fourth Ball-Chiu form factor, which, contrary to the Abelian case, is nonvanishing, and accounts for 10% of the total constituent quark mass.  
  Address [Aguilar, A. C.; Cardona, J. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436941600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3642  
Permanent link to this record
 

 
Author Pavao, R.; Sakai, S.; Oset, E. url  doi
openurl 
  Title Production of N*(1535) and N*(1650) in Lambda(c)-> (K)over-bar(0)eta p (pi N) decay Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 98 Issue 1 Pages 015201 - 8pp  
  Keywords  
  Abstract To study the properties of the N*(1535) and N*(1650), we calculate the mass distributions of MB in the Lambda(c) -> (K) over bar (MB)-M-0 decay, with MB = pi N(I = 1/2), eta p, and K Sigma(I = 1/2). We do this by calculating the tree-level and loop contributions, mixing pseudoscalar-baryon and vector-baryon channels using the local hidden gauge formalism. The loop contributions for each channel are calculated using the chiral unitary approach. We observe that for the eta N mass distribution only the N* (1535) is seen, with the N* (1650) contributing to the width of the curve, but for the pi N mass distribution both resonances are clearly visible. In the case of MB = K Sigma, we found that the strength of the K E mass distribution is smaller than that of the mass distributions of the pi N and eta p in the Lambda(+)(c)-> (K) over bar (0)pi N and Lambda(+)(c) -> (K) over bar (0)eta p processes, in spite of this channel having a large coupling to the N* (1650). This is because the K Sigma pair production is suppressed in the primary production from the Lambda(c) decay.  
  Address [Pavao, R.] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teor, Valencia 46071, Spain, Email: rpavao@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000436940200003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3643  
Permanent link to this record
 

 
Author AGATA Collaboration (Kaya, L. et al); Gadea, A. doi  openurl
  Title High-spin structure in the transitional nucleus Xe-131: Competitive neutron and proton alignment in the vicinity of the N=82 shell closure Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 98 Issue 1 Pages 014309 - 19pp  
  Keywords  
  Abstract The transitional nucleus Xe-131 is investigated after multinucleon transfer in the Xe-136 + Pb-208 and Xe-136 +U-238 reactions employing the high-resolution Advanced gamma-Tracking Array (AGATA) coupled to the magnetic spectrometer PRISMA at the Laboratori Nazionali di Legnaro, Italy, and as an elusive reaction product in the fusion-evaporation reaction Sn-124(B-11) ,p3n)Xe-131 employing the High-efficiency Observatory for gamma-Ray Unique Spectroscopy (HORUS) gamma-ray array coupled to a double-sided silicon strip detector at the University of Cologne, Germany. The level scheme of Xe-131 is extended to 5 MeV. A pronounced backbending is observed at (h) over bar omega approximate to 0.4 MeV along the negative-parity one-quasiparticle vh(11/12)(alpha = -1/2) band. The results are compared to the high-spin systematics of the Z = 54 isotopes and the N = 77 isotones. Large-scale shell-model calculations employing the PQM130, SN100PN, GCN50:82, SN100-KTH, and a realistic effective interaction reproduce the experimental findings and provide guidance to elucidate the structure of the high-spin states. Further calculations in Xe129-132 provide insight into the changing nuclear structure along the Xe chain towards the N = 82 shell closure. Proton occupancy in the pi 0h(11/2) orbital is found to be decisive for the description of the observed backbending phenomenon.  
  Address [Kaya, L.; Vogt, A.; Reiter, P.; Birkenbach, B.; Blazhev, A.; Arnswald, K.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Lewandowski, L.; Mueller-Gatermann, C.; Queiser, M.; Rosiak, D.; Saed-Samii, N.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Wolf, K.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany, Email: levent.kaya@ikp.uni-koeln.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000437737600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3650  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva