|   | 
Details
   web
Records
Author Lazaries, G.; Pallis, C.
Title Shift symmetry and Higgs inflation in supergravity with observable gravitational waves Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 11 Issue 11 Pages 114 - 28pp
Keywords Cosmology of Theories beyond the SM; Supergravity Models; Supersymmetric Effective Theories
Abstract We demonstrate how to realize within supergravity a novel chaotic-type inflationary scenario driven by the radial parts of a conjugate pair of Higgs superfields causing the spontaneous breaking of a grand unified gauge symmetry at a scale assuming the value of the supersymmetric grand unification scale. The superpotential is uniquely determined at the renormalizable level by the gauge symmetry and a continuous R symmetry. We select two types of Kahler potentials, which respect these symmetries as well as an approximate shift symmetry. In particular, they include in a logarithm a dominant shift-symmetric term proportional to a parameter c together with a small term violating this symmetry and characterized by a parameter c(+). In both cases, imposing a lower bound on c, inflation can be attained with subplanckian values of the original inflaton, while the corresponding effective theory respects perturbative unitarity for r +/- = c(+)/c_ <= 1. These inflationary models do not lead to overproduction of cosmic defects, are largely independent of the one-loop radiative corrections and accommodate, for natural values of r +/-, observable gravitational waves consistently with all the current observational data. The inflaton mass is mostly confined in the range (3.7 – 8.1) x 10(10) GeV.
Address [Lazaries, G.] Aristotle Univ Thessaloniki, Fac Engn, Sch Elect & Comp Engn, GR-54124 Thessaloniki, Greece, Email: lazaride@eng.auth.gr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000365101200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2467
Permanent link to this record
 

 
Author Fileviez Perez, P.; Murgui, C.; Plascencia, A.D.
Title The QCD axion and unification Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 11 Issue 11 Pages 093 - 21pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT
Abstract The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the Peccei-Quinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range ma, <^> (3-13) x 10-9 eV. We study the axion phenomenology and find that the ABRACADABRA and CASPEr-Electric experiments will be able to fully probe this mass window.
Address [Perez, Pavel Fileviez; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000514868300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4296
Permanent link to this record
 

 
Author Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A.
Title Dark matter from a complex scalar singlet: the role of dark CP and other discrete symmetries Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 11 Issue 11 Pages 202 - 34pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract We study the case of a pseudo-scalar dark matter candidate which emerges from a complex scalar singlet, charged under a global U(1) symmetry, which is broken both explicitly and spontaneously. The pseudo-scalar is naturally stabilized by the presence of a remnant discrete symmetry: dark CP. We study and compare the phenomenology of several simplified models with only one explicit symmetry breaking term. We find that several regions of the parameter space are able to reproduce the observed dark matter abundance while respecting direct detection and invisible Higgs decay limits: in the resonances of the two scalars, featuring the known as forbidden or secluded dark matter, and through non-resonant Higgs-mediated annihilations. In some cases, combining different measurements would allow one to distinguish the breaking pattern of the symmetry. Moreover, this setup admits a light DM candidate at the sub-GeV scale. We also discuss the situation where more than one symmetry breaking term is present. In that case, the dark CP symmetry may be spontaneously broken, thus spoiling the stability of the dark matter candidate. Requiring that this does not happen imposes a constraint on the allowed parameter space. Finally, we consider an effective field theory approach valid in the pseudo-Nambu-Goldstone boson limit and when the U(1) breaking scale is much larger than the electroweak scale.
Address [Coito, Leonardo] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: leonardo.coito@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000723081600002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5031
Permanent link to this record
 

 
Author Jeong, K.S.; Park, W.I.
Title Cosmology with a supersymmetric local B – L model Type Journal Article
Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 11 Issue 11 Pages 016 - 34pp
Keywords cosmological phase transitions; gravitational waves / sources; physics of the early universe; supersymmetry and cosmology
Abstract We propose a minimal gauged U(1)(B-L) extension of the minimal supersymmetric Standard Model (MSSM) which resolves the cosmological moduli problem via thermal inflation, and realizes late-time Affleck-Dine leptogensis so as to generate the right amount of baryon asymmetry at the end of thermal inflation. The present relic density of dark matter can be explained by sneutrinos, MSSM neutralinos, axinos, or axions. Cosmic strings from U(1)(B-L) breaking are very thick, and so the expected stochastic gravitational wave background from cosmic string loops has a spectrum different from the one in the conventional Abelian-Higgs model, as would be distinguishable at least at LISA and DECIGO. The characteristic spectrum is due to a flat potential, and may be regarded as a hint of supersymmetry. Combined with the resolution of moduli problem, the expected signal of gravitational waves constrains the U(1)(B-L) breaking scale to be O(10(12-13)) GeV. Interestingly, our model provides a natural possibility for explaining the observed ultra-high-energy cosmic rays thanks to the fact that the core width of strings in our scenario is very large, allowing a large enhancement of particle emissions from the cusps of string loops. Condensation of LHu flat-direction inside of string cores arises inevitably and can also be the main source of the ultra-high-energy cosmic rays accompanied by ultra-high-energy lightest supersymmetric particles.
Address [Jeong, Kwang Sik] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea, Email: ksjeong@pusan.ac.kr;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001149204000015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5992
Permanent link to this record
 

 
Author Achterberg, A.; van Beekveld, M.; Caron, S.; Gomez-Vargas, G.A.; Hendriks, L.; Ruiz de Austri, R.
Title Implications of the Fermi-LAT Pass 8 Galactic Center excess on supersymmetric dark matter Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 12 Issue 12 Pages 040 - 23pp
Keywords dark matter theory; galaxy morphology; cosmology of theories beyond the SM; dwarfs galaxies
Abstract The Fermi Collaboration has recently updated their analysis of gamma rays from the center of the Galaxy. They reconfirm the presence of an unexplained emission feature which is most prominent in the region of 1-10 GeV, known as the Galactic Center GeV excess (GCE). Although the GCE is now fi rmly detected, an interpretation of this emission as a signal of self-annihilating dark matter (DM) particles is not unambiguously possible due to systematic effects in the gamma-ray modeling estimated in the Galactic Plane. In this paper we build a covariance matrix, collecting different systematic uncertainties investigated in the Fermi Collaboration's paper that affect the GCE spectrum. We show that models where part of the GCE is due to annihilating DM is still consistent with the new data. We also re-evaluate the parameter space regions of the minimal supersymmetric Standard Model (MSSM) that can contribute dominantly to the GCE via neutralino DM annihilation. All recent constraints from DM direct detection experiments such as PICO, LUX, PandaX and Xenon1T, limits on the annihilation cross section from dwarf spheroidal galaxies and the Large Hadron Collider limits are considered in this analysis. Due to a slight shift in the energy spectrum of the GC excess with respect to the previous Fermi analysis, and the recent limits from direct detection experiments, we find a slightly shifted parameter region of the MSSM, compared to our previous analysis, that is consistent with the GCE. Neutralinos with a mass between 85-220 GeV can describe the excess via annihilation into a pair of W-bosons or top quarks. Remarkably, there are models with low fine-tuning among the regions that we have found. The complete set of solutions will be probed by upcoming direct detection experiments and with dedicated searches in the upcoming data of the Large Hadron Collider.
Address [Achterberg, Abraham; van Beekveld, Melissa; Caron, Sascha; Hendriks, Luc] Radboud Univ Nijmegen, Fac Sci, Inst Math Astrophys & Particle Phys, Mailbox 79,POB 9010, NL-6500 GL Nijmegen, Netherlands, Email: a.achterberg@astro.ru.nl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000418922000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3439
Permanent link to this record