|   | 
Details
   web
Records
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Spectrum and Morphology of the Very-high-energy Source HAWC J2019+368 Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume (down) 911 Issue 2 Pages 143 - 11pp
Keywords
Abstract The MGRO J2019+37 region is one of the brightest sources in the sky at TeV energies. It was detected in the second HAWC catalog as 2HWC J2019+367 and here we present a detailed study of this region using data from HAWC. This analysis resolves the region into two sources: HAWC J2019+368 and HAWC J2016+371. We associate HAWC J2016+371 with the evolved supernova remnant CTB 87, although its low significance in this analysis prevents a detailed study at this time. An investigation of the morphology (including possible energy-dependent morphology) and spectrum for HAWC J2019+368 is the focus of this work. We associate HAWC J2019+368 with PSR J2021+3651 and its X-ray pulsar wind nebula, the Dragonfly nebula. Modeling the spectrum measured by HAWC and Suzaku reveals a similar to 7 kyr pulsar and nebula system producing the observed emission at X-ray and gamma-ray energies.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM USA, Email: chadb@umd.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000687217300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4939
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.
Title Removing Astrophysics in 21 cm Maps with Neural Networks Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume (down) 907 Issue 1 Pages 44 - 14pp
Keywords Cosmology; Cold dark matter; Dark matter; Dark matter distribution; H I line emission; Intergalactic medium; Cosmological evolution; Convolutional neural networks; Large-scale structure of the universe
Abstract Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: Pablo.Villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000612333400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4698
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title Evidence of 200 TeV Photons from HAWC J1825-134 Type Journal Article
Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.
Volume (down) 907 Issue 2 Pages L30 - 9pp
Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Gamma-ray observatories
Abstract The Earth is bombarded by ultrarelativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10(15) eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV gamma-rays from decaying pi(0), produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cerenkov (HAWC) observatory of the gamma-ray source, HAWC J1825-134, whose energy spectrum extends well beyond 200 TeV without a break or cutoff. The source is found to be coincident with a giant molecular cloud. The ambient gas density is as high as 700 protons cm(-3). While the nature of this extreme accelerator remains unclear, CRs accelerated to energies of several PeV colliding with the ambient gas likely produce the observed radiation.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: sabrina.casanova@ifj.edu.pl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-8205 ISBN Medium
Area Expedition Conference
Notes WOS:000612623100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4703
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F.
Title A Survey of Active Galaxies at TeV Photon Energies with the HAWC Gamma-Ray Observatory Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume (down) 907 Issue 2 Pages 67 - 18pp
Keywords Active galactic nuclei; Blazars; Gamma-rays; Gamma-ray sources; Sky surveys; Radio galaxies
Abstract The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory continuously detects TeV photons and particles within its large field of view, accumulating every day a deeper exposure of two-thirds of the sky. We analyzed 1523 days of HAWC live data acquired over four and a half years, in a follow-up analysis of 138 nearby (z < 0.3) active galactic nuclei from the Third Catalog of Hard Fermi-LAT sources culminating within 40 degrees of the zenith at Sierra Negra, the HAWC site. This search for persistent TeV emission used a maximum-likelihood analysis assuming intrinsic power-law spectra attenuated by pair production of gamma-ray photons with the extragalactic background light. HAWC clearly detects persistent emission from Mkn 421 and Mkn 501, the two brightest blazars in the TeV sky, at 65 sigma and 17 sigma level, respectively. Marginal evidence, just above the 3 sigma level, was found for three other known very high-energy emitters: the radio galaxy M87 and the BL Lac objects VER J0521+211 and 1ES 1215+303, the latter two at z similar to 0.1. We find a 4.2 sigma evidence for collective emission from the set of 30 previously reported very high-energy sources, with Mkn 421 and Mkn 501 excluded. Upper limits are presented for the sample under the power-law assumption and in the predefined (0.5-2.0), (2.0-8.0), and (8.0-32.0) TeV energy intervals.
Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA, Email: alberto@inaoep.mx;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000612927500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4712
Permanent link to this record
 

 
Author AMON Team, HAWC and IceCube Collaborations (Ayala Solares, H.A. et al); Salesa Greus, F.
Title Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume (down) 906 Issue 1 Pages 63 - 10pp
Keywords
Abstract The High Altitude Water Cerenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photohadronic or hadronic interactions. The AMON system is running continuously, receiving subthreshold data (i.e., data that are not suited on their own to do astrophysical searches) from HAWC and IceCube, and combining them in real time. Here we present the analysis algorithm, as well as results from archival data collected between 2015 June and 2018 August, with a total live time of 3.0 yr. During this period we found two coincident events that have a false-alarm rate (FAR) of <1 coincidence yr(-1), consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on 2019 November 20 and issues alerts to the community through the Gamma-ray Coordinates Network with an FAR threshold of <4 coincidences yr(-1).
Address [Solares, H. A. Ayala; Coutu, S.; DeLaunay, J. J.; Fox, D. B.; Gregoire, T.; Keivani, A.; Krauss, F.; Mostafa, M.; Murase, K.; Turley, C. F.; Anderson, T.; Cowen, D. F.; Dunkman, M.; Eller, P.; Fienberg, A.; Huang, F.; Kheirandish, A.; Lanfranchi, J. L.; Li, Y.; Pankova, D. V.; Weiss, M. J.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA, Email: hgayala@psu.edu
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes WOS:000605929400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4679
Permanent link to this record