|   | 
Details
   web
Records
Author Bazeia, D.; Losano, L.; Olmo, G.J.; Rubiera-Garcia, D.
Title Geodesically complete BTZ-type solutions of 2+1 Born-Infeld gravity Type Journal Article
Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume (down) 34 Issue 4 Pages 045006 - 21pp
Keywords Born-Infeld gravity; BTZ; wormholes; nonsingular solutions; geodesic completeness
Abstract We study Born-Infeld gravity coupled to a static, non-rotating electric field in 2 + 1 dimensions and find exact analytical solutions. Two families of such solutions represent geodesically complete, and hence nonsingular, spacetimes. Another family represents a point-like charge with a singularity at the center. Despite the absence of rotation, these solutions resemble the charged, rotating BTZ solution of general relativity but with a richer structure in terms of horizons. The nonsingular character of the first two families turn out to be attached to the emergence of a wormhole structure on their innermost region. This seems to be a generic prediction of extensions of general relativity formulated in metric-affine (or Palatini) spaces, where metric and connection are regarded as independent degrees of freedom.
Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000395398800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3013
Permanent link to this record
 

 
Author Alfonso, V.I.; Bejarano, C.; Beltran Jimenez, J.; Olmo, G.J.; Orazi, E.
Title The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields Type Journal Article
Year 2017 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume (down) 34 Issue 23 Pages 235003 - 20pp
Keywords modified gravity; metric-affine theories; torsion; non-minimal couplings
Abstract We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.
Address [Alfonso, Victor I.] Univ Fed Campina Grande, Unidade Acad Fis, BR-58109970 Campina Grande, PB, Brazil, Email: viafonso@df.ufcg.edu.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000414726500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3353
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.; Sanchez-Puente, A.
Title Impact of curvature divergences on physical observers in a wormhole space-time with horizons Type Journal Article
Year 2016 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume (down) 33 Issue 11 Pages 115007 - 12pp
Keywords Singularities; black holes; metric-affine geometry
Abstract The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
Address [Olmo, Gonzalo J.; Sanchez-Puente, A.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000377442000010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2728
Permanent link to this record
 

 
Author Bazeia, D.; Losano, L.; Menezes, R.; Olmo, G.J.; Rubiera-Garcia, D.
Title Robustness of braneworld scenarios against tensorial perturbations Type Journal Article
Year 2015 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume (down) 32 Issue 21 Pages 215011 - 10pp
Keywords brane-worlds; tensorial perturbations; metric-affine geometry
Abstract Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.
Address [Bazeia, D.; Losano, L.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051900 Joao Pessoa, Paraiba, Brazil, Email: bazeia@fisica.ufpb.br;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:000364921200014 Approved no
Is ISI no International Collaboration yes
Call Number IFIC @ pastor @ Serial 2459
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title Some recent results on Ricci-based gravity theories Type Journal Article
Year 2022 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume (down) 31 Issue Pages 2240012 - 15pp
Keywords Metric-affine gravity; scalar fields; stellar models; junction conditions; compact objects
Abstract In this paper, metric-afline theories in which the gravity Lagrangian is built using (projectively invariant) contractions of the Ricci tensor with itself and with the metric (Ricci-based gravity theories, or RBGs for short) are reviewed. The goal is to provide a contextualized and coherent presentation of some recent results. In particular, we focus on the correspondence that exists between the field equations of these theories and those of general relativity, and comment on how this can be used to build new solutions of physical interest. We also discuss the formalism of junction conditions in the f (R) case, and provide a brief summary on current experimental and observational bounds on model parameters.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000848888900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5350
Permanent link to this record