toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Carretero, V.; Colomer, M.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 920 Issue 1 Pages 50 - 6pp  
  Keywords  
  Abstract On 2019 October 1, the IceCube Collaboration detected a muon track neutrino with a high probability of being of astrophysical origin, IC191001A. After a few hours, the tidal disruption event (TDE) AT2019dsg, observed by the Zwicky Transient Facility (ZTF), was indicated as the most likely counterpart of the IceCube track. More recently, the follow-up campaign of the IceCube alerts by ZTF suggested a second TDE, AT2019fdr, as a promising counterpart of another IceCube muon track candidate, IC200530A, detected on 2020 May 30. Here, these intriguing associations are followed-up by searching for neutrinos in the ANTARES detector from the directions of AT2019dsg and AT2019fdr using a time-integrated approach. As no significant evidence for space clustering is found in the ANTARES data, upper limits on the one-flavor neutrino flux and fluence are set.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: giulia.illuminati3@unibo.it  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000706478500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5001  
Permanent link to this record
 

 
Author HAWC and HESS Collaborations (Abdalla, H. et al); Salesa Greus, F. url  doi
openurl 
  Title TeV Emission of Galactic Plane Sources with HAWC and HESS Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 917 Issue 1 Pages 6 - 16pp  
  Keywords  
  Abstract The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy gamma-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the gamma-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall gamma-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the gamma-ray sky between WCD and IACT techniques.  
  Address [Abdalla, H.; Backes, M.; Davids, I. D.; Kasai, E.; Shapopi, J. N. S.; Shiningayamwe, K.; Steenkamp, R.; van Rensburg, C.] Univ Namibia, Dept Phys, Private Bag 13301, Windhoek 10005, Namibia, Email: armelle.jardin-blicq@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000683127600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4932  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title Probing the Sea of Cosmic Rays by Measuring Gamma-Ray Emission from Passive Giant Molecular Clouds with HAWC Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 914 Issue 2 Pages 106 - 14pp  
  Keywords  
  Abstract The study of high-energy gamma rays from passive giant molecular clouds (GMCs) in our Galaxy is an indirect way to characterize and probe the paradigm of the “sea” of cosmic rays in distant parts of the Galaxy. By using data from the High Altitude Water Cerenkov (HAWC) Observatory, we measure the gamma-ray flux above 1 TeV of a set of these clouds to test the paradigm. We selected high galactic latitude clouds that are in HAWC's field of view and that are within 1 kpc distance from the Sun. We find no significant excess emission in the cloud regions, nor when we perform a stacked log-likelihood analysis of GMCs. Using a Bayesian approach, we calculate 95% credible interval upper limits of the gamma-ray flux and estimate limits on the cosmic-ray energy density of these regions. These are the first limits to constrain gamma-ray emission in the multi-TeV energy range (>1 TeV) using passive high galactic latitude GMCs. Assuming that the main gamma-ray production mechanism is due to proton-proton interaction, the upper limits are consistent with a cosmic-ray flux and energy density similar to that measured at Earth.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: hgayala@psu.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000663912700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4858  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title HAWC Search for High-mass Microquasars Type Journal Article
  Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume (down) 912 Issue 1 Pages L4 - 12pp  
  Keywords  
  Abstract Microquasars with high-mass companion stars are promising very high energy (VHE; 0.1-100 TeV) gamma-ray emitters, but their behaviors above 10 TeV are poorly known. Using the High Altitude Water Cerenkov (HAWC) observatory, we search for excess gamma-ray emission coincident with the positions of known high-mass microquasars (HMMQs). No significant emission is observed for LS 5039, Cyg X-1, Cyg X-3, and SS 433 with 1523 days of HAWC data. We set the most stringent limit above 10 TeV obtained to date on each individual source. Under the assumption that HMMQs produce gamma rays via a common mechanism, we have performed source-stacking searches, considering two different scenarios: (I) gamma-ray luminosity is a fraction epsilon ( gamma ) of the microquasar jet luminosity, and (II) VHE gamma rays are produced by relativistic electrons upscattering the radiation field of the companion star in a magnetic field B. We obtain epsilon ( gamma ) < 5.4 x 10(-6) for scenario I, which tightly constrains models that suggest observable high-energy neutrino emission by HMMQs. In the case of scenario II, the nondetection of VHE gamma rays yields a strong magnetic field, which challenges synchrotron radiation as the dominant mechanism of the microquasar emission between 10 keV and 10 MeV.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA, Email: kefang@physics.wisc.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646368700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4798  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Salesa, F.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 911 Issue 1 Pages 48 - 11pp  
  Keywords  
  Abstract A search for astrophysical pointlike neutrino sources using the data collected by the ANTARES detector between 2007 January 29 and 2017 December 31 is presented. A likelihood method is used to assess the significance of an excess of muon neutrinos inducing track-like events in correlation with the location of a list of possible sources. Different sets of objects are tested in the analysis: (a) a subsample of the Fermi 3LAC catalog of blazars, (b) a jet-obscured population of active galactic nuclei, (c) a sample of hard X-ray selected radio galaxies, (d) a star-forming galaxy catalog, and (e) a public sample of 56 very-high-energy track events from the IceCube experiment. None of the tested sources shows a significant association with the sample of neutrinos detected by ANTARES. The smallest p-value is obtained for the catalog of radio galaxies with an equal-weights hypothesis, with a pre-trial p-value equivalent to a 2.8 sigma excess, which is equivalent to 1.6 sigma post-trial. In addition, the results of a dedicated analysis for the blazar MG3 J225517+2409 are also reported: this source is found to be the most significant within the Fermi 3LAC sample, with five ANTARES events located less than one degree from the source. This blazar showed evidence of flaring activity in Fermi data, in spacetime coincidence with a high-energy track detected by IceCube. An a posteriori significance of 2.6 sigma for the combination of ANTARES and IceCube data is reported.  
  Address [Albert, A.; Drouhin, D.; Huang, F.; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France, Email: julien.aublin@apc.in2p3.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000641563000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4773  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title Evidence that Ultra-high-energy Gamma Rays Are a Universal Feature near Powerful Pulsars Type Journal Article
  Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume (down) 911 Issue 2 Pages L27 - 8pp  
  Keywords  
  Abstract The highest-energy known gamma-ray sources are all located within 0.degrees 5 of extremely powerful pulsars. This raises the question of whether ultra-high-energy (UHE; >56 TeV) gamma-ray emission is a universal feature expected near pulsars with a high spin-down power. Using four years of data from the High Altitude Water Cherenkov Gamma-Ray Observatory, we present a joint-likelihood analysis of 10 extremely powerful pulsars to search for subthreshold UHE gamma-ray emission correlated with these locations. We report a significant detection (>3 sigma), indicating that UHE gamma-ray emission is a generic feature of powerful pulsars. We discuss the emission mechanisms of the gamma rays and the implications of this result. The individual environment, such as the magnetic field and particle density in the surrounding area, appears to play a role in the amount of emission.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA, Email: kmalone@lanl.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000642352500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4796  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title Spectrum and Morphology of the Very-high-energy Source HAWC J2019+368 Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 911 Issue 2 Pages 143 - 11pp  
  Keywords  
  Abstract The MGRO J2019+37 region is one of the brightest sources in the sky at TeV energies. It was detected in the second HAWC catalog as 2HWC J2019+367 and here we present a detailed study of this region using data from HAWC. This analysis resolves the region into two sources: HAWC J2019+368 and HAWC J2016+371. We associate HAWC J2016+371 with the evolved supernova remnant CTB 87, although its low significance in this analysis prevents a detailed study at this time. An investigation of the morphology (including possible energy-dependent morphology) and spectrum for HAWC J2019+368 is the focus of this work. We associate HAWC J2019+368 with PSR J2021+3651 and its X-ray pulsar wind nebula, the Dragonfly nebula. Modeling the spectrum measured by HAWC and Suzaku reveals a similar to 7 kyr pulsar and nebula system producing the observed emission at X-ray and gamma-ray energies.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM USA, Email: chadb@umd.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000687217300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4939  
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F. url  doi
openurl 
  Title Removing Astrophysics in 21 cm Maps with Neural Networks Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 907 Issue 1 Pages 44 - 14pp  
  Keywords Cosmology; Cold dark matter; Dark matter; Dark matter distribution; H I line emission; Intergalactic medium; Cosmological evolution; Convolutional neural networks; Large-scale structure of the universe  
  Abstract Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.  
  Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: Pablo.Villanueva@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612333400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4698  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title Evidence of 200 TeV Photons from HAWC J1825-134 Type Journal Article
  Year 2021 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume (down) 907 Issue 2 Pages L30 - 9pp  
  Keywords Gamma-ray astronomy; Gamma-ray sources; Gamma-rays; Gamma-ray observatories  
  Abstract The Earth is bombarded by ultrarelativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10(15) eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV gamma-rays from decaying pi(0), produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cerenkov (HAWC) observatory of the gamma-ray source, HAWC J1825-134, whose energy spectrum extends well beyond 200 TeV without a break or cutoff. The source is found to be coincident with a giant molecular cloud. The ambient gas density is as high as 700 protons cm(-3). While the nature of this extreme accelerator remains unclear, CRs accelerated to energies of several PeV colliding with the ambient gas likely produce the observed radiation.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Phys Div, Los Alamos, NM USA, Email: sabrina.casanova@ifj.edu.pl;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612623100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4703  
Permanent link to this record
 

 
Author HAWC Collaboration (Albert, A. et al); Salesa Greus, F. url  doi
openurl 
  Title A Survey of Active Galaxies at TeV Photon Energies with the HAWC Gamma-Ray Observatory Type Journal Article
  Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume (down) 907 Issue 2 Pages 67 - 18pp  
  Keywords Active galactic nuclei; Blazars; Gamma-rays; Gamma-ray sources; Sky surveys; Radio galaxies  
  Abstract The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory continuously detects TeV photons and particles within its large field of view, accumulating every day a deeper exposure of two-thirds of the sky. We analyzed 1523 days of HAWC live data acquired over four and a half years, in a follow-up analysis of 138 nearby (z < 0.3) active galactic nuclei from the Third Catalog of Hard Fermi-LAT sources culminating within 40 degrees of the zenith at Sierra Negra, the HAWC site. This search for persistent TeV emission used a maximum-likelihood analysis assuming intrinsic power-law spectra attenuated by pair production of gamma-ray photons with the extragalactic background light. HAWC clearly detects persistent emission from Mkn 421 and Mkn 501, the two brightest blazars in the TeV sky, at 65 sigma and 17 sigma level, respectively. Marginal evidence, just above the 3 sigma level, was found for three other known very high-energy emitters: the radio galaxy M87 and the BL Lac objects VER J0521+211 and 1ES 1215+303, the latter two at z similar to 0.1. We find a 4.2 sigma evidence for collective emission from the set of 30 previously reported very high-energy sources, with Mkn 421 and Mkn 501 excluded. Upper limits are presented for the sample under the power-law assumption and in the predefined (0.5-2.0), (2.0-8.0), and (8.0-32.0) TeV energy intervals.  
  Address [Albert, A.; Dingus, B. L.; Durocher, M.; Harding, J. P.; Kunde, G. J.; Malone, K.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA, Email: alberto@inaoep.mx;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000612927500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4712  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva