|   | 
Details
   web
Records
Author Sobczyk, J.E.; Hernandez, E.; Nakamura, S.X.; Nieves, J.; Sato, T.
Title Angular distributions in electroweak pion production off nucleons: Odd parity hadron terms, strong relative phases, and model dependence Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (up) 98 Issue 7 Pages 073001 - 39pp
Keywords
Abstract The study of pion production in nuclei is important for signal and background determinations in current and future neutrino oscillation experiments. The first step, however, is to understand the pion production reactions at the free nucleon level. We present an exhaustive study of the charged-current and neutral-current neutrino and antineutrino pion production off nucleons, paying special attention to the angular distributions of the outgoing pion. We show, using general arguments, that parity violation and time-reversal odd correlations in the weak differential cross sections are generated from the interference between different contributions to the hadronic current that are not relatively real. Next, we present a detailed comparison of three state-of-the-art, microscopic models for electroweak pion production off nucleons, and we also confront their predictions with polarized electron data, as a test of the vector content of these models. We also illustrate the importance of carrying out a comprehensive test at the level of outgoing pion angular distributions, going beyond comparisons done for partially integrated cross sections, where model differences cancel to a certain extent. Finally, we observe that all charged and neutral current distributions show sizable anisotropies, and identify channels for which parity-violating effects are clearly visible. Based on the above results, we conclude that the use of isotropic distributions for the pions in the center of mass of the final pion-nucleon system, as assumed by some of the Monte Carlo event generators, needs to be improved by incorporating the findings of microscopic calculations.
Address [Sobczyk, J. E.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Apartado 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000446557200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3751
Permanent link to this record
 

 
Author Du, M.L.; Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Yao, D.L.
Title Towards a new paradigm for heavy-light meson spectroscopy Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (up) 98 Issue 9 Pages 094018 - 8pp
Keywords
Abstract Since 2003 many new hadrons, including the lowest-lying positive-parity charm-strange mesons D*(s0) (2317) and D-s1 (2460), have been observed that do not conform with quark-model expectations. It was recently demonstrated that various puzzles in the charm-meson spectrum find a natural resolution if the SU(3) multiplets for the lightest scalar and axial-vector states, among them the D*(s0) (2317) and the D-s1 (2460), owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D-(s) and D*((s)) mesons. Most importantly the ordering of the lightest strange and nonstrange scalars becomes natural. We demonstrate for the first time that this mechanism is strongly supported by the recent high quality data on the B- -> D+ pi(-)pi(-) provided by the LHCb experiment. This implies that the lowest quark-model positive-parity charm mesons, together with their bottom counterparts, if realized in nature, do not form the ground-state multiplet. This is similar to the pattern that has been established for the scalar mesons made from light up, down, and strange quarks, where the lowest multiplet is considered to be made of states not described by the quark model. In a broader view, the hadron spectrum must be viewed as more than a collection of quark-model states.
Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@itp.ac.cn
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000451000200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3817
Permanent link to this record
 

 
Author Sobczyk, J.E.; Rocco, N.; Lovato, A.; Nieves, J.
Title Weak production of strange and charmed ground-state baryons in nuclei Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume (up) 99 Issue 6 Pages 065503 - 16pp
Keywords
Abstract We present results for the quasielastic weak production of Delta and Sigma hyperons induced by (nu) over bar. scattering off nuclei in the kinematical region of interest for accelerator neutrino experiments. We employ realistic hole spectral functions and we describe the propagation of the hyperons in the nuclear medium by means of a Monte Carlo cascade. The latter strongly modifies the kinematics and the relative production rates of the hyperons, leading to a nonvanishing Sigma(+) cross section, to a sizable enhancement of the Lambda production and to a drastic reduction of the Sigma(0) and Sigma(-) distributions. We also compute the quasielastic weak Lambda(c) production cross section, paying special attention to estimate the uncertainties induced by the model dependence of the vacuum n -> Lambda(c) weak matrix element. In this regard, the recent BESIII measurements of the branching ratios of Lambda(c) -> Lambda l(+)nu(l) (l = e, mu) are used to benchmark the available theoretical predictions.
Address [Sobczyk, J. E.; Nieves, And J.] Univ Valencia, Inst Invest Patema, CSIC, Inst Fis Corpuscular IFIC,Ctr Mixto, Apartado 22085, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000471984800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4059
Permanent link to this record
 

 
Author Alvarez-Ruso, L. et al; Nieves, J.
Title NuSTEC White Paper: Status and challenges of neutrino-nucleus scattering Type Journal Article
Year 2018 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume (up) 100 Issue Pages 1-68
Keywords Neutrino; Nucleus; Scattering; Nuclear; Model; Oscillations
Abstract The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process – from quasi-elastic to deep inelastic scattering – is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.
Address [Alvarez-Ruso, L.; Nieves, J.] Univ Valencia, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: morfin@fnal.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000430618800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3569
Permanent link to this record
 

 
Author Xiao, C.W.; Nieves, J.; Oset, E.
Title Heavy quark spin symmetric molecular states from (D)over-bar(()*())Sigma(()(c)*()) and other coupled channels in the light of the recent LHCb pentaquarks Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (up) 100 Issue 1 Pages 014021 - 6pp
Keywords
Abstract We consider the (D) over bar (()*())Sigma(()(c)*()) states, together with J/psi N and other coupled channels, and take an interaction consistent with heavy quark spin symmetry, with the dynamical input obtained from an extension of the local hidden gauge approach. By fitting only one parameter to the recent three pentaquark states reported by the LHCb Collaboration, we can reproduce the three of them in base to the mass and the width, providing for them the quantum numbers and approximate molecular structure as 1/2(-) (D) over bar Sigma(c), 1/2(-) (D) over bar*Sigma(c), and 3/2(-) (D) over bar*Sigma(c), and the isospin I = 1/2. We find another state around 4374 MeV, of the 3/2(-) (D) over bar Sigma(c)* structure, for which indications appear in the experimental spectrum. Two other near degenerate states of a 1/2(-) (D) over bar*Sigma(c)* and 3/2(-) (D) over bar*Sigma(c)* nature are also found around 4520 MeV, which although less clear, are not incompatible with the observed spectrum. In addition, a 5/2(-) (D) over bar*Sigma(c)* state at the same energy appears, which however does not couple to J/psi p in an S wave, and hence, it is not expected to show up in the LHCb experiment.
Address [Xiao, C. W.] Cent S Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000476694500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4086
Permanent link to this record