toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Strege, C.; Bertone, G.; Feroz, F.; Fornasa, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Global fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 04 Issue 4 Pages 013 - 40pp  
  Keywords dark matter theory; supersymmetry and cosmology  
  Abstract We present global fits of the constrained Minimal Supersymmetric Standard Model (cMSSM) and the Non-Universal Higgs Model (NUHM), including the most recent CMS constraint on the Higgs boson mass, 5.8 fb(-1) integrated luminosity null Supersymmetry searches by ATLAS, the new LHCb measurement of B R ((B) over bar (s) -> mu(+) mu(-)) and the 7-year WMAP dark matter relic abundance determination. We include the latest dark matter constraints from the XENON100 experiment, marginalising over astrophysical and particle physics uncertainties. We present Bayesian posterior and profile likelihood maps of the highest resolution available today, obtained from up to 350M points. We find that the new constraint on the Higgs boson mass has a dramatic impact, ruling out large regions of previously favoured cMSSM and NUHM parameter space. In the cMSSM, light sparticles and predominantly gaugino-like dark matter with a mass of a few hundred GeV are favoured. The NUHM exhibits a strong preference for heavier sparticle masses and a Higgsino-like neutralino with a mass of 1 TeV. The future ton-scale XENON1T direct detection experiment will probe large portions of the currently favoured cMSSM and NUHM parameter space. The LHC operating at 14 TeV collision energy will explore the favoured regions in the cMSSM, while most of the regions favoured in the NUHM will remain inaccessible. Our best-fit points achieve a satisfactory quality-of-fit, with p-values ranging from 0.21 to 0.35, so that none of the two models studied can be presently excluded at any meaningful significance level.  
  Address Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England, Email: charlotte.strege09@imperial.ac.uk;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000318556200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1445  
Permanent link to this record
 

 
Author Di Mauro, M.; Donato, F.; Fornengo, N.; Lineros, R.A.; Vittino, A. url  doi
openurl 
  Title Interpretation of AMS-02 electrons and positrons data Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 04 Issue 4 Pages 006 - 33pp  
  Keywords ultra high energy cosmic rays; particle acceleration; cosmic ray theory; cosmic ray experiments  
  Abstract We perform a combined analysis of the recent AMS-02 data on electrons, positrons, electrons plus positrons and positron fraction, in a self-consistent framework where we realize a theoretical modeling of all the astrophysical components that can contribute to the observed fluxes in the whole energy range. The primary electron contribution is modeled through the sum of an average flux from distant sources and the fluxes from the local supernova remnants in the Green catalog. The secondary electron and positron fluxes originate from interactions on the interstellar medium of primary cosmic rays, for which we derive a novel determination by using AMS-02 proton and helium data. Primary positrons and electrons from pulsar wind nebulae in the ATNF catalog are included and studied in terms of their most significant (while loosely known) properties and under different assumptions (average contribution from the whole catalog, single dominant pulsar, a few dominant pulsars). We obtain a remarkable agreement between our various modeling and the AMS-02 data for all types of analysis, demonstrating that the whole AMS-02 leptonic data admit a self-consistent interpretation in terms of astrophysical contributions.  
  Address [Di Mauro, M.; Donato, F.; Fornengo, N.; Vittino, A.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy, Email: mattia.dimauro@to.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334496500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1771  
Permanent link to this record
 

 
Author Fornengo, N.; Lineros, R.A.; Regis, M.; Taoso, M. url  doi
openurl 
  Title The isotropic radio background revisited Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 04 Issue 4 Pages 008 - 36pp  
  Keywords cosmic ray theory; galactic magnetic fields; dark matter theory  
  Abstract We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.  
  Address [Fornengo, Nicolao; Regis, Marco] Univ Turin, Dipartimento Fis Teor, I-10125 Turin, Italy, Email: fornengo@to.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000334496500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1772  
Permanent link to this record
 

 
Author Pallis, C. url  doi
openurl 
  Title Linking Starobinsky-type inflation in no-scale supergravity to MSSM Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 04 Issue 4 Pages 024 - 31pp  
  Keywords particle physics – cosmology connection; supersymmetry and cosmology; cosmology of theories beyond the SM; inflation  
  Abstract A novel realization of the Starobinsky inflationary model within a moderate extension of the Minimal Supersymmetric Standard Model (MSSM) is presented. The proposed superpotential is uniquely determined by applying a continuous R and a Z2 discrete symmetry, whereas the Kahler potential is associated with a no-scale-type SU(54, 1)/ SU(54) x U(1) R X Z2 Kahler manifold. The inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling (with a parameter CT involved) between the inflaton and the Ricci scalar curvature, inflation can be attained even for subplanckian values of the inflaton with CT >= 76 and the corresponding effective theory being valid up to the Planck scale. The inflationary observables turn out to be in agreement with the current data and the inflaton mass is predicted to be 3 10(3) GeV. At the cost of a relatively small superpotential coupling constant, the model offers also a resolution of the f,t problem of MSSM for CT <= 4500 and gravitino heavier than about 10(4) GeV. Supplementing MSSM by three right-handed neutrinos we show that spontaneously arising couplings between the inflaton and the particle content of MSSM not only ensure a sufficiently low reheating temperature but also support a scenario of non-thermal leptogenesis consistently with the neutrino oscillation parameters.  
  Address [Pallis, C.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: kpallis@auth.gr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343042800006 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1961  
Permanent link to this record
 

 
Author Vincent, A.C.; Scott, P. url  doi
openurl 
  Title Thermal conduction by dark matter with velocity and momentum-dependent cross-sections Type Journal Article
  Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (up) 04 Issue 4 Pages 019 - 31pp  
  Keywords dark matter theory; stars  
  Abstract We use the formalism of Gould and Raffelt [1] to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients alpha and kappa for cross-sections that go as v(rel)(2), v(rel)(4), v(rel)(-2), q(2), q(4) and q(-2), where v(rel) is the relative DM-nucleus velocity and q is the momentum transferred in the collision. We find that a v(rel)(-2) depend ence can significantly enhance energy transport from the inner solar core to the outer core. The same can true for any q-dependent coupling, if the dark matter mass lies within some specific range for each coupling. This effect can complement direct searches for dark matter; combining these results with state-of-the-art solar simulations should greatly increase sensitivity to certain DM models. It also seems possible that the so-called Solar Abundance Problem could be resolved by enhanced energy transport in the solar core due to such velocity-or momentum-dependent scatterings.  
  Address [Vincent, Aaron C.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: vincent@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000343042800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1962  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva