Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–20] |
![]() |
Gariazzo, S., Martinez-Mirave, P., Mena, O., Pastor, S., & Tortola, M. (2023). Non-unitary three-neutrino mixing in the early Universe. J. Cosmol. Astropart. Phys., 03(3), 046–18pp.
Abstract: Deviations from unitarity in the three-neutrino mixing canonical picture are expected in many physics scenarios beyond the Standard Model. The mixing of new heavy neutral leptons with the three light neutrinos would in principle modify the strength and flavour structure of charged-current and neutral-current interactions with matter. Non-unitarity effects would therefore have an impact on the neutrino decoupling processes in the early Universe and on the value of the effective number of neutrinos, Neff. We calculate the cosmological energy density in the form of radiation with a non-unitary neutrino mixing matrix, addressing the possible interplay between parameters. Highly accurate measurements of Neff from forthcoming cosmological observations can provide independent and complementary limits on the departures from unitarity. For completeness, we relate the scenario of small deviations from unitarity to non-standard neutrino interactions and compare the forecasted constraints to other existing limits in the literature.
Keywords: cosmological neutrinos; neutrino properties; neutrino theory
|
Amerio, A., Calore, F., Serpico, P. D., & Zaldivar, B. (2024). Deepening gamma-ray point-source catalogues with sub-threshold information. J. Cosmol. Astropart. Phys., 03(3), 055–18pp.
Abstract: We propose a novel statistical method to extend Fermi-LAT catalogues of highlatitude -y-ray sources below their nominal threshold. To do so, we rely on the determination of the differential source -count distribution of sub -threshold sources which only provides the statistical flux distribution of faint sources. By simulating ensembles of synthetic skies, we assess quantitatively the likelihood for pixels in the sky with relatively low -test statistics to be due to sources, therefore complementing the source -count distribution with spatial information. Besides being useful to orient efforts towards multi -messenger and multi -wavelength identification of new -y-ray sources, we expect the results to be especially advantageous for statistical applications such as cross -correlation analyses.
Keywords: gamma ray theory; Frequentist statistics
|
Arina, C., Di Mauro, M., Fornengo, N., Heisig, J., Jueid, A., & Ruiz de Austri, R. (2024). CosmiXs: cosmic messenger spectra for indirect dark matter searches. J. Cosmol. Astropart. Phys., 03(3), 035–41pp.
Abstract: The energy spectra of particles produced from dark matter (DM) annihilation or decay are one of the fundamental ingredients to calculate the predicted fluxes of cosmic rays and radiation searched for in indirect DM detection. We revisit the calculation of the source spectra for annihilating and decaying DM using the VINCIA shower algorithm in PYTHIA to include QED and QCD final state radiation and diagrams for the EW corrections with massive bosons, not present in the default PYTHIA shower model. We take into account the spin information of the particles during the entire EW shower and the off -shell contributions from massive gauge bosons. Furthermore, we perform a dedicated tuning of the VINCIA and PYTHIA parameters to LEP data on the production of pions, photons, and hyperons at the Z resonance and discuss the underlying uncertainties. To enable the use of our results in DM studies, we provide the tabulated source spectra for the most relevant cosmic messenger particles, namely antiprotons, positrons, gamma rays and the three neutrino flavors, for all the fermionic and bosonic channels and DM masses between 5 GeV and 100 TeV, on github.
|
Berbig, M. (2025). Kick it like DESI: PNGB quintessence with a dynamically generated initial velocity. J. Cosmol. Astropart. Phys., 03(3), 015–46pp.
Abstract: Motivated by the hint for time-dependent dynamical dark energy from an analysis of the DESI Baryon Accoustic Oscillation (BAO) data together with information from the Cosmic Microwave Background (CMB) and Supernovae (SN), we relax the assumption of a vanishing initial velocity for a quintessence field. In particular we focus on pseudo-NambuGoldstone-Boson (PNGB) quintessence in the form of an axion like particle, that can arise as the phase of a complex scalar and could possess derivative couplings to fermions or topological couplings to abelian gauge fields, without upsetting the necessary flatness of its potential. We discuss mechanisms from the aforementioned interactions for sourcing an initial axion field velocity theta(center dot)i at redshifts 3 <= z <= 10, that will “kick” it into motion. Driven by this initial velocity the axion will first roll up in its potential, similar to “freezing” dark energy. After it has reached the pinnacle of its trajectory, it will start to roll down, and behave as “thawing” quintessence. As a proof of concept we undertake a combined fit to BAO, SN and CMB data at the background level. We find that a scenario with theta(center dot)i = O (1) ma, where ma is the axion mass, is slightly preferred over both Lambda CDM and the conventional “thawing” quintessence with theta(center dot)i = 0. The best fit points for this case exhibit transplanckian decay constants and very flat potentials, which both are in tension with conjectures from string theory.
|
Lessa, L. A., & Olmo, G. J. (2025). On the structure of black bounces sourced by anisotropic fluids. J. Cosmol. Astropart. Phys., 03(3), 019–18pp.
Abstract: The field equations of static, spherically symmetric geometries generated by anisotropic fluids is investigated with the aim of better understanding the relation between the matter and the emergence of minimal area throats, like in wormhole and black bounce scenarios. Imposing some simplifying restrictions on the matter, which amounts to considering nonlinear electromagnetic sources, we find analytical expressions that allow one to design the type of sought geometries. We illustrate our analysis with several examples, including an asymmetric, bounded black bounce spacetime which reproduces the standard ReissnerNordstr & ouml;m geometry on the outside all the way down to the throat.
|
Bijnens, J., Hermansson-Truedsson, N., & Rodriguez-Sanchez, A. (2025). Constraints on the hadronic light-by-light tensor in corner kinematics for the muon g-2. J. High Energy Phys., 03(3), 094–36pp.
Abstract: The dispersive approach to the hadronic light-by-light contribution to the muon g – 2 involves an integral over three virtual photon momenta appearing in the light-by-light tensor. Building upon previous works, we systematically derive short-distance constraints in the region where two momenta are large compared to the third, the so-called Melnikov-Vainshtein or corner region. We include gluonic corrections for the different scalar functions appearing in the Lorentz decomposition of the underlying tensor, and explicitly check analytic agreement with alternative operator product expansions in overlapping regimes of validity. A very strong pattern of cancellations is observed for the final g – 2 integrand. The last observation suggests that a very compact expression only containing the axial current form factors can provide a good approximation of the corner region of the hadronic light-by-light tensor.
|
Grinstein, B., Lu, X. C., Miro, C., & Quilez, P. (2025). Accidental symmetries, Hilbert series, and friends. J. High Energy Phys., 03(3), 172–86pp.
Abstract: Accidental symmetries in effective field theories can be established by computing and comparing Hilbert series. This invites us to study them with the tools of invariant theory. Applying this technology, we spotlight three classes of accidental symmetries that hold to all orders for non-derivative interactions. They are broken by derivative interactions and become ordinary finite-order accidental symmetries. To systematically understand the origin and the patterns of accidental symmetries, we introduce a novel mathematical construct – a (non-transitive) binary relation between subgroups that we call friendship. Equipped with this, we derive new criteria for all-order accidental symmetries in terms of friends, and criteria for finite-order accidental symmetries in terms of friends ma non troppo. They allow us to verify and identify accidental symmetries more efficiently without computing the Hilbert series. We demonstrate the success of our new criteria by applying them to a variety of sample accidental symmetries, including the custodial symmetry in the Higgs sector of the Standard Model effective field theory.
|
Figueroa, D. G., & Loayza, N. (2025). Geometric reheating of the Universe. J. Cosmol. Astropart. Phys., 03(3), 073–44pp.
Abstract: We study the post-inflationary energy transfer from the inflaton (phi) into a scalar field (chi) non-minimally coupled to gravity through xi R|chi|2, considering models with inflaton potential Vinf proportional to |phi| p around phi = 0. This corresponds to the paradigm of geometric preheating, which we extend to its non-linear regime via lattice simulations. Considering alpha-attractor T-mo del potentials as a proxy, we study the viability of proper reheating for p = 2, 4, 6, determining whether radiation domination (RD) due to energetic dominance of chi over phi, can be achieved. For large inflationary scales Lambda, reheating is frustrated for p = 2, it can be partially achieved for p = 4, and it becomes very efficient for p = 6. Efficient reheating can be however blocked if chi sustains self-interactions (unless these are extremely feeble), or if Lambda is low enough, so that inflaton fragmentation brings the universe rapidly into RD. Whenever RD is achieved, either due to reheating (into chi) or to inflaton fragmentation, we characterize the energy and time scales of the problem, as a function of Lambda and xi.
Keywords: physics of the early universe; inflation
|
Boubekeur, L., Choi, K. Y., Ruiz de Austri, R., & Vives, O. (2010). The degenerate gravitino scenario. J. Cosmol. Astropart. Phys., 04(4), 005–26pp.
Abstract: In this work, we explore the “degenerate gravitino” scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogenesis are reached for small splittings of order 10(-2) GeV. While for stau NLSP, temperatures of T-RH similar or equal to 4 x 10(9) GeV can be obtained even for splittings of order of tens of GeVs. This “degenerate gravitino” scenario offers a possible way out to the gravitino problem for thermal leptogenesis in supersymmetric theories.
|
Jackson, C. B., Servant, G., Shaughnessy, G., Tait, T. M. P., & Taoso, M. (2010). Higgs in space! J. Cosmol. Astropart. Phys., 04(4), 004–29pp.
Abstract: We consider the possibility that the Higgs can be produced in dark matter annihilations, appearing as a line in the spectrum of gamma rays at an energy determined by the masses of the WIMP and the Higgs itself. We argue that this phenomenon occurs generally in models in which the the dark sector has large couplings to the most massive states of the SM and provide a simple example inspired by the Randall-Sundrum vision of dark matter, whose 4d dual corresponds to electroweak symmetry-breaking by strong dynamics which respect global symmetries that guarantee a stable WIMP. The dark matter is a Dirac fermion that couples to a Z' acting as a portal to the Standard Model through its strong coupling to top quarks. Annihilation into light standard model degrees of freedom is suppressed and generates a feeble continuum spectrum of gamma rays. Loops of top quarks mediate annihilation into gamma Z, gamma h, and gamma Z', providing a forest of lines in the spectrum. Such models can be probed by the Fermi/GLAST satellite and ground-based Air Cherenkov telescopes.
|