toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schwetz, T.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters Type Journal Article
  Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume (down) 13 Issue Pages 063004 - 15pp  
  Keywords  
  Abstract We present the results of a global neutrino oscillation data analysis within the three-flavour framework. We include the latest results from the MINOS long-baseline experiment (including electron neutrino appearance and anti-neutrino data), updating all relevant solar (Super-Kamiokande (SK) II + III), atmospheric (SK I + II + III) and reactor (KamLAND) data. Furthermore, we include a recent re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These results have important consequences for the analysis of reactor experiments and in particular for the status of the mixing angle theta(13). In our recommended default analysis, we find from the global fit that the hint for nonzero theta(13) remains weak, at 1.8 sigma for both neutrino mass hierarchy schemes. However, we discuss in detail the dependence of these results on assumptions regarding the reactor neutrino analysis.  
  Address [Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: schwetz@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292137500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 666  
Permanent link to this record
 

 
Author Schwetz, T.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Where we are on theta(13): addendum to 'Global neutrino data and recent reactor fluxes: status of three-flavor oscillation parameters' Type Journal Article
  Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume (down) 13 Issue Pages 109401 - 5pp  
  Keywords  
  Abstract In this addendum to Schwetz et al (2011 New J. Phys. 13 063004), we consider the recent results from long-baseline nu(mu) -> nu(e) searches at the Tokai to Kamioka (T2K) and Main Injector Neutrino Oscillation Search (MINOS) experiments and investigate their implications for the mixing angle theta(13) and the leptonic Dirac CP phase delta. By combining the 2.5 sigma indication for a nonzero value of theta(13) coming from the T2K data with global neutrino oscillation data, we obtain a significance for theta(13) > 0 of about 3 sigma with best fit points sin(2) theta(13) = 0.013 (0.016) for normal (inverted) neutrino mass ordering. These results depend somewhat on assumptions concerning the analysis of reactor neutrino data.  
  Address [Schwetz, T] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: schwetz@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296664700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 801  
Permanent link to this record
 

 
Author Miranda, O.G.; Papoulias, D.K.; Sanders, O.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title Low-energy probes of sterile neutrino transition magnetic moments Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 12 Issue 12 Pages 191 - 24pp  
  Keywords Beyond Standard Model; CP violation; Neutrino Physics; Solar and Atmospheric Neutrinos  
  Abstract Sterile neutrinos with keV-MeV masses and non-zero transition magnetic moments can be probed through low-energy nuclear or electron recoil measurements. Here we determine the sensitivities of current and future searches, showing how they can probe a previously unexplored parameter region. Future coherent elastic neutrino-nucleus scattering (CEvNS) or elastic neutrino-electron scattering (EvES) experiments using a monochromatic 'Cr source can fully probe the region indicated by the recent XENONIT excess.  
  Address [Miranda, O. G.; Sanders, O.] Ctr Invest & Estudios Avanzados IPN, Dept Fis, Apartado Postal 14-740, Mexico City 07000, DF, Mexico, Email: omr@fis.cinvestav.mx;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000735427300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5063  
Permanent link to this record
 

 
Author Emmanuel-Costa, D.; Simoes, C.; Tortola, M. url  doi
openurl 
  Title The minimal adjoint-SU (5) x Z(4) GUT model Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 10 Issue 10 Pages 054 - 30pp  
  Keywords Neutrino Physics; GUT; Discrete and Finite Symmetries  
  Abstract An extension of the adjoint SU (5) model with a flavour symmetry based on the Z(4) group is investigated. The Z(4) symmetry is introduced with the aim of leading the up-and down-quark mass matrices to the Nearest-Neighbour-Interaction form. As a consequence of the discrete symmetry embedded in the SU (5) gauge group, the charged lepton mass matrix also gets the same form. Within this model, light neutrinos get their masses through type-I, type-III and one-loop radiative seesaw mechanisms, implemented, respectively, via a singlet, a triplet and an octet from the adjoint fermionic 24 fields. It is demonstrated that the neutrino phenomenology forces the introduction of at least three 24 fermionic multiplets. The symmetry SU (5) x Z(4) allows only two viable zero textures for the effective neutrino mass matrix. It is showed that one texture is only compatible with normal hierarchy and the other with inverted hierarchy in the light neutrino mass spectrum. Finally, it is also demonstrated that Z(4) freezes out the possibility of proton decay through exchange of coloured Higgs triplets at tree-level.  
  Address [Emmanuel-Costa, D.; Simoes, C.] Univ Lisbon, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: david.costa@ist.utl.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000325495200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1604  
Permanent link to this record
 

 
Author De Romeri, V.; Martinez-Mirave, P.; Tortola, M. url  doi
openurl 
  Title Signatures of primordial black hole dark matter at DUNE and THEIA Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (down) 10 Issue 10 Pages 051 - 21pp  
  Keywords dark matter theory; neutrino experiments; primordial black holes  
  Abstract Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the 10(15)-10(17) g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawking radiation. We explore the possibility of detecting light (non-)rotating PBHs with future neutrino experiments. We focus on two next generation facilities: the Deep Underground Neutrino Experiment (DUNE) and THEIA. We simulate the expected event spectra at both experiments assuming different PBH mass distributions and spins, and we extract the expected 95% C.L. sensitivities to these scenarios. Our analysis shows that future neutrino experiments like DUNE and THEIA will be able to set competitive constraints on PBH dark matter, thus providing complementary probes in a part of the PBH parameter space currently constrained mainly by photon data.  
  Address [De Romeri, Valentina] Univ Valencia, Dept Fis Teor, Paterna 46980, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000758221400007 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5140  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva