|   | 
Details
   web
Records
Author Norena, J.; Verde, L.; Barenboim, G.; Bosch, C.
Title Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 08 Issue 8 Pages 019 - 16pp
Keywords redshift surveys; cosmological parameters from LSS; inflation
Abstract We consider whether the non-Gaussian scale-dependent halo bias can be used not only to constrain the local form of non-Gaussianity but also to distinguish among different shapes. In particular, we ask whether it can constrain the behavior of the primordial three-point function in the squeezed limit where one of the momenta is much smaller than the other two. This is potentially interesting since the observation of a three-point function with a squeezed limit that does not go like the local nor equilateral templates would be a signal of non-trivial dynamics during inflation. To this end we use the quasi-single field inflation model of Chen & Wang [1, 2] as a representative two-parameter model, where one parameter governs the amplitude of non-Gaussianity and the other the shape. We also perform a model-independent analysis by parametrizing the scale-dependent bias as a power-law on large scales, where the power is to be constrained from observations. We find that proposed large-scale structure surveys (with characteristics similar to the dark energy task force stage IV surveys) have the potential to distinguish among the squeezed limit behavior of different bispectrum shapes for a wide range of fiducial model parameters. Thus the halo bias can help discriminate between different models of inflation.
Address [Norena, Jorge; Verde, Licia] Univ Barcelona ICC UB IEEC, Inst Ciencias Cosmos, Barcelona 08028, Spain, Email: jorge.norena@icc.ub.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000308800700020 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1189
Permanent link to this record
 

 
Author Albaladejo, M.; Oller, J.A.; Oset, E.; Rios, G.; Roca, L.
Title Finite volume treatment of pi pi scattering and limits to phase shifts extraction from lattice QCD Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 08 Issue 8 Pages 071 - 22pp
Keywords Lattice QCD; Chiral Lagrangians; Phenomenological Models
Abstract We study theoretically the effects of finite volume for pi pi scattering in order to extract physical observables for infinite volume from lattice QCD. We compare three different approaches for pi pi scattering (lowest order Bethe-Salpeter approach, N/D and inverse amplitude methods) with the aim of studying the effects of the finite size of the box in the potential of the different theories, specially the left-hand cut contribution through loops in the crossed t, u-channels. We quantify the error made by neglecting these effects in usual extractions of physical observables from lattice ()CD spectrum. We conclude that for pi pi phase-shifts in the scalar-isoscalar channel up to 800 MeV this effect is negligible for box sizes bigger than 2,5m(pi)(-1) and of the order of 5% at around 1.5 – 2m(pi)(-1). For isospin 2 the finite size effects can reach up to 10% for that energy. We also quantify the error made when using the standard Luscher method to extract physical observables from lattice QCD, which is widely used in the literature but is an approximation of the one used in the present work.
Address [Albaladejo, M.; Oller, J. A.; Rios, G.; Roca, L.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain, Email: albaladejo@um.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000309883600014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1214
Permanent link to this record
 

 
Author Bernabeu, J.; Martinez-Vidal, F.; Villanueva-Perez, P.
Title Time reversal violation from the entangled B-0(B)over-bar(0) system Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 08 Issue 8 Pages 064 - 18pp
Keywords Discrete and Finite Symmetries; B-Physics; CP violation
Abstract We discuss the concepts and methodology to implement an experiment probing directly Time Reversal (T) non-invariance, without any experimental connection to CP violation, by the exchange of in and out states. The idea relies on the B-0(B) over bar (0)) entanglement and decay time information available at B factories. The flavor or CP tag of the state of the still living neutral meson by the first decay of its orthogonal partner overcomes the problem of irreversibility for unstable systems, which prevents direct tests of T with incoherent particle states. T violation in the time evolution between the two decays means experimentally a difference between the rates for the time-ordered (l+X, J/psi K-s) and (J/psi K-L, l(-)X) decays, and three other independent asymmetries. The proposed strategy has been applied to simulated data samples of similar size and features to those currently available, from which we estimate the significance of the expected discovery to reach many standard deviations.
Address [Bernabeu, J.] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000309883600021 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1215
Permanent link to this record
 

 
Author Filipuzzi, A.; Portoles, J.; Ruiz-Femenia, P.
Title Zeros of the W(L)Z(L) -> W(L)Z(L) amplitude: where vector resonances stand Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 08 Issue 8 Pages 080 - 22pp
Keywords Spontaneous Symmetry Breaking; Chiral Lagrangians
Abstract A Higgsless electroweak theory may be populated by spin-1 resonances around E similar to 1 TeV as a consequence of a new strong interacting sector, frequently proposed as a tool to smear the high-energy behaviour of scattering amplitudes, for instance, elastic gauge boson scattering. Information on those resonances, if they exist, must be contained in the low-energy couplings of the electroweak chiral effective theory. Using the facts that: i) the scattering of longitudinal gauge bosons, W-L, Z(L), can be well described in the high-energy region (E >> M-W) by the scattering of the corresponding Goldstone bosons (equivalence theorem) and ii) the zeros of the scattering amplitude carry the information on the heavier spectrum that has been integrated out; we employ the O(p(4)) electroweak chiral Lagrangian to identify the parameter space region of the low-energy couplings where vector resonances may arise. An estimate of their masses is also provided by our method.
Address [Filipuzzi, Alberto] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46071 Valencia, Spain, Email: Alberto.Filipuzzi@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000309883600005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1216
Permanent link to this record
 

 
Author Pich, A.; Rosell, I.; Sanz-Cillero, J.J.
Title One-loop calculation of the oblique S parameter in higgsless electroweak models Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 08 Issue 8 Pages 106 - 34pp
Keywords Higgs Physics; Beyond Standard Model; Chiral Lagrangians; Technicolor and Composite Models
Abstract We present a one-loop calculation of the oblique S parameter within Higgsless models of electroweak symmetry breaking and analyze the phenomenological implications of the available electroweak precision data. We use the most general effective Lagrangian with at most two derivatives, implementing the chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R) with Goldstones, gauge bosons and one multiplet of vector and axial-vector massive resonance states. Using the dispersive representation of Peskin and Takeuchi and imposing the short-distance constraints dictated by the operator product expansion, we obtain S at the NLO in terms of a few resonance parameters. In asymptotically-free gauge theories, the final result only depends on the vector-resonance mass and requires M-V > 1.8TeV (3.8TeV) to satisfy the experimental limits at the 3 sigma (1 sigma) level; the axial state is always heavier, we obtain M-A > 2.5TeV (6.6TeV) at 3 sigma (1 sigma). In strongly-coupled models, such as walking or conformal technicolour, where the second Weinberg sum rule does not apply, the vector and axial couplings are not determined by the short-distance constraints; but one can still derive a lower bound on S, provided the hierarchy M-V < M-A remains valid. Even in this less constrained situation, we find that in order to satisfy the experimental limits at 3 sigma one needs M-V,M-A > 1.8TeV.
Address [Pich, A.; Rosell, I.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain, Email: antonio.pich@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000309883200063 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1217
Permanent link to this record