toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Montesinos, V.; Albaladejo, M.; Nieves, J.; Tolos, L. url  doi
openurl 
  Title Properties of the Tcc(3875)+ and Tcbar,cbar(3875)- and their heavy-quark spin partners in nuclear matter Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 108 Issue 3 Pages 035205 - 15pp  
  Keywords  
  Abstract We discuss the modification of the properties of the tetraquark-like Tcc(3875)+ and Tc over bar c over bar (3875)- states in dense nuclear matter. We consider the Tcc+ and Tc over bar c over bar – in vacuum as purely isoscalar D*D and D*D S-wave bound states, respectively, dynamically generated from a heavy-quark effective interaction between the charmed mesons. We compute the D, D, D*, and D* spectral functions embedded in a nuclear medium and use them to determine the corresponding Tcc+ and Tc over bar c over bar – self-energies and spectral functions. We find important modifications of the D*D and D*D scattering amplitudes and of the pole position of these exotic states already for p0/2, with p0 the normal nuclear density. We also discuss the dependence of these results on the D*D (D*D) molecular component in the Tcc+ (Tc over bar c- over bar ) wave function. Owing to the different nature of the D(*)N and D(*)N interactions, we find characteristic changes of the in-medium properties of the Tcc(3875)+ and Tc over bar c over bar (3875)-, which become increasingly visible as the density increases. The experimental confirmation of the found distinctive density pattern will give support to the existence of molecular components in these tetraquark-like states, since in the case they were mostly colorless compact quark structures (cct over bar t over bar and c over bar c over bar tt, with t = u, d), the density behaviors of the Tcc(3875)+ and Tc over bar c over bar (3875)- nuclear medium spectral functions, though different, would not likely be the same as those found in this work for molecular scenarios. Finally, we perform similar analyses for the isoscalar JP = 1+ heavy-quark spin symmetry partners of the Tcc+ (T cc *+ ) and the T c over bar c- over bar (T*- c over bar c over bar ) by considering the D*0D*+ and D*0D*- scattering T matrices.  
  Address [Montesinos, V.; Albaladejo, M.; Nieves, J.] Ctr Mixto CSIC UV, Inst Fis Corpuscular, Inst Invest Paterna, C-Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: Victor.Montesinos@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001080598700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5705  
Permanent link to this record
 

 
Author Davesne, D.; Holt, J.W.; Navarro, J.; Pastore, A. doi  openurl
  Title Landau sum rules with noncentral quasiparticle interactions Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 108 Issue 3 Pages 034003 - 7pp  
  Keywords  
  Abstract We derive explicit expressions for the Landau sum rules for the case of the most general spin-dependent quasiparticle interaction including all possible tensor interactions. For pure neutron matter, we investigate the convergence of the sum rules at different orders of approximation. Employing modern nuclear Hamiltonians based on chiral effective field theory, we find that the inclusion of noncentral interactions improves the convergence of the sum rules only for low densities (n <= 0.1 fm-3). Around nuclear matter saturation density, we find that even ostensibly perturbative nuclear interactions violate the sum rules considerably. By artificially weakening the strength of the nuclear Hamiltonian, the convergence can be improved.  
  Address [Davesne, D.] Univ Lyon, Univ Lyon 1, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001088200900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5750  
Permanent link to this record
 

 
Author Xu, Z.Y. et al; Algora, A.; Morales, A.I. url  doi
openurl 
  Title Beta-delayed neutron spectroscopy of 133In Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 108 Issue 1 Pages 014314 - 9pp  
  Keywords  
  Abstract The decay properties of 133In were studied in detail at the ISOLDE Decay Station. The implementation of the Resonance Ionization Laser Ion Source allowed separate measurements of its 9/2+ ground state (133gIn) and 1/2- isomer (133mIn). With the use of & beta;-delayed neutron and & gamma; spectroscopy, the decay strengths above the neutron separation energy were quantified in this neutron-rich nucleus for the first time. The allowed Gamow-Teller transition 9/2+ & RARR; 7/2+ was located at 5.93 MeV in the 133gIn decay with a log ft = 4.7(1). In addition, several neutron-unbound states were populated at lower excitation energies by the first-forbidden decays of 133g,mIn. We assigned spins and parities to those neutron-unbound states based on the & beta;-decay selection rules, the log ft values, and systematics.  
  Address [Xu, Z. Y.; Madurga, M.; Grzywacz, R.; King, T. T.; Halverson, C.; Heideman, J.; Singh, M.; Yokoyama, R.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001062056700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5757  
Permanent link to this record
 

 
Author Yokoyama, R. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Morales, A.I.; Rubio, B.; Tolosa-Delgado, A. doi  openurl
  Title β-delayed neutron emissions from N > 50 gallium isotopes Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 108 Issue 6 Pages 064307 - 15pp  
  Keywords  
  Abstract beta-delayed gamma-neutron spectroscopy has been performed on the decay of A=84 to 87 gallium isotopes at the RI-beam Factory at the RIKEN Nishina Center using a high-efficiency array of 3He neutron counters (BRIKEN). beta-2n-gamma events were measured in the decays of all of the four isotopes for the first time, which is direct evidence for populating the excited states of two-neutron daughter nuclei. Detailed decay schemes with the gamma branching ratios were obtained for these isotopes, and the neutron emission probabilities (P-xn) were updated from the previous study. Hauser-Feshbach statistical model calculations were performed to understand the experimental branching ratios. We found that the P-1n and P-2n values are sensitive to the nuclear level densities of 1n daughter nuclei and showed that the statistical model reproduced the P-2n/P-1n ratio better when experimental levels plus shell-model level densities fit by the Gilbert-Cameron formula were used as the level-density input. We also showed the neutron and gamma branching ratios are sensitive to the ground-state spin of the parent nucleus. Our statistical model analysis suggested J <= 3 for the unknown ground-state spin of the odd-odd nucleus Ga-86, from the I gamma(4(+)-> 2(+))/I-gamma(2(+)-> 0(+)) ratio of Ga-84 and the P-2n/P-1n ratio. These results show the necessity of detailed understanding of the decay scheme, including data from neutron spectroscopy, in addition to gamma measurements of the multineutron emitters.  
  Address [Yokoyama, R.; Grzywacz, R.; Rasco, B. C.; Brewer, N.; Heideman, J.; King, T. T.; Madurga, M.; Singh, M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA, Email: yokoyama@cns.s.u-tokyo.ac.jp  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001159167500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5939  
Permanent link to this record
 

 
Author Gjestvang, D. et al; Algora, A. doi  openurl
  Title Examination of how properties of a fissioning system impact isomeric yield ratios of the fragments Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume (down) 108 Issue 6 Pages 064602 - 12pp  
  Keywords  
  Abstract The population of isomeric states in the prompt decay of fission fragments-so-called isomeric yield ratios (IYRs)-is known to be sensitive to the angular momentum J that the fragment emerged with, and may therefore contain valuable information on the mechanism behind the fission process. In this work, we investigate how changes in the fissioning system impact the measured IYRs of fission fragments to learn more about what parameters affect angular momentum generation. To enable this, a new technique for measuring IYRs is first demonstrated. It is based on the time of arrival of discrete gamma rays, and has the advantage that it enables the study of the IYR as a function of properties of the partner nucleus. This technique is used to extract the IYR of 134Te, strongly populated in actinide fission, from the three different fissioning systems: 232Th(n, f), 238U(n, f), at two different neutron energies, as well as 252Cf(sf). The impacts of changing the fissioning system, the compound nuclear excitation energy, the minimum J of the binary partner, and the number of neutrons emitted on the IYR of 134Te are determined. The decay code TALYS is used in combination with the fission simulation code FREYA to calculate the primary fragment angular momentum from the IYR. We find that the IYR of 134Te has a slope of 0.004 +/- 0.002 with increase in compound nucleus (CN) mass. When investigating the impact on the IYR of increased CN excitation energy, we find no change with an energy increase similar to the difference between thermal and fast fission. By varying the mass of the partner fragment emerging with 134Te, it is revealed that the IYR of 134Te is independent of the total amount of prompt neutrons emitted from the fragment pair. This indicates that neutrons carry minimal angular momentum away from the fission fragments. Comparisons with the FREYA+TALYS simulations reveal that the average angular momentum in 134Te following 238U(n, f) is 6.0 h over bar . This is not consistent with the value deduced from recent CGMF calculations. Finally, the IYR sensitivity to the angular momentum of the primary fragment is discussed. These results are not only important to help understanding the underlying mechanism in nuclear fission, but can also be used to constrain and benchmark fission models, and are relevant to the gamma -ray heating problem of reactors.  
  Address [Gjestvang, D.; Siem, S.; Nemer, J.; Paulsen, W.; Popovitch, Y.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway, Email: dorthea.gjestvang@fys.uio.no  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001160674400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5947  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva