toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rebel, B.; Hall, C.; Bernard, E.; Faham, C.H.; Ito, T.M.; Lundberg, B.; Messina, M.; Monrabal, F.; Pereverzev, S.P.; Resnati, F.; Rowson, P.C.; Soderberg, M.; Strauss, T.; Tomas, A.; Va'vra, J.; Wang, H. url  doi
openurl 
  Title High voltage in noble liquids for high energy physics Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume (down) 9 Issue Pages T08004 - 57pp  
  Keywords Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Neutron detectors (cold, thermal, fast neutrons); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.  
  Address [Rebel, B.; Soderberg, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA, Email: rebel@fnal.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341927600043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1947  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume (down) 9 Issue Pages P11006 - 20pp  
  Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.  
  Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345026000020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2061  
Permanent link to this record
 

 
Author Diaz-Morcillo, A.; Barcelo, J.M.G.; Guerrero, A.J.L.; Navarro, P.; Gimeno, B.; Cuneáis, S.A.; Melcon, A.A.; Cogollos, C.; Calatroni, S.; Dobrich, B.; Gallego-Puyol, J.D.; Golm, J.; Irastorza, I.G.; Malbrunot, C.; Miralda-Escude, J.; Garay, C.P.; Redondo, J.; Wuensch, W. url  doi
openurl 
  Title Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration Type Journal Article
  Year 2022 Publication Universe Abbreviated Journal Universe  
  Volume (down) 8 Issue 1 Pages 5 - 22pp  
  Keywords axions; dark matter detectors; haloscopes; resonant cavities  
  Abstract With the increasing interest in dark matter axion detection through haloscopes, in which different international groups are currently involved, the RADES group was established in 2016 with the goal of developing very sensitive detection systems to be operated in dipole magnets. This review deals with the work developed by this collaboration during its first five years: from the first designs-based on the multi-cavity concept, aiming to increase the haloscope volume, and thereby improve sensitivity-to their evolution, data acquisition design, and finally, the first experimental run. Moreover, the envisaged work within RADES for both dipole and solenoid magnets in the short and medium term is also presented.  
  Address [Diaz-Morcillo, Alejandro; Garcia Barcelo, Jose Maria; Lozano Guerrero, Antonio Jose; Navarro, Pablo; Alvarez Melcon, Alejandro] Univ Politecn Cartagena, Dept Informat & Commun Technol, Cartagena 30202, Spain, Email: alejandro.diaz@upct.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000746970600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5086  
Permanent link to this record
 

 
Author Gelmini, G.B.; Takhistov, V.; Witte, S.J. url  doi
openurl 
  Title Casting a wide signal net with future direct dark matter detection experiments Type Journal Article
  Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (down) 07 Issue 7 Pages 009 - 55pp  
  Keywords dark matter detectors; dark matter experiments; dark matter theory  
  Abstract As dark matter (DM) direct detection experiments continue to improve their sensitivity they will inevitably encounter an irreducible background arising from coherent neutrino scattering. This so-called “neutrino floor” may significantly reduce the sensitivity of an experiment to DM-nuclei interactions, particularly if the recoil spectrum of the neutrino background is approximately degenerate with the DM signal. This occurs for the conventionally considered spin-independent (SI) or spin-dependent (SD) interactions. In such case, an increase in the experiment's exposure by multiple orders of magnitude may not yield any significant increase in sensitivity. The typically considered SI and SD interactions, however, do not adequately reflect the whole landscape of the well-motivated DM models, which includes other interactions. Since particle DM has not been detected yet in laboratories, it is essential to understand and maximize the detection capabilities for a broad variety of possible models and signatures. In this work we explore the impact of the background arising from various neutrino sources on the discovery potential of a DM signal for a large class of viable DM-nucleus interactions and several potential futuristic experimental settings, with different target elements. For some momentum suppressed cross sections, large DM particle masses and heavier targets, we find that there is no suppression of the discovery limits due to neutrino backgrounds. Further, we explicitly demonstrate that inelastic scattering, which could appear in models with multicomponent dark sectors, would help to lift the signal degeneracy associated with the neutrino floor. This study could assist with mapping out the optimal DM detection strategy for the next generation of experiments.  
  Address [Gelmini, Graciela B.; Takhistov, Volodymyr; Witte, Samuel J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA, Email: gelmini@physics.ucla.edu;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000437422800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3646  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Bou-Cabo, M.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (down) 05 Issue 5 Pages 016 - 13pp  
  Keywords dark matter experiments; neutrino detectors; dark matter detectors; neutrino astronomy  
  Abstract A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.  
  Address [Adrian-Martineza, S.; Ardid, M.; Bou-Cabo, M.; Felis, I.; Martinez-Mora, J. A.; Saldana, M.; Wilms, J.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, C Paranimf 1, Gandia 46730, Spain, Email: siladmar@upv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389860500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2902  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva