|   | 
Details
   web
Records
Author Blanton, T.D.; Romero-Lopez, F.; Sharpe, S.R.
Title Implementing the three-particle quantization condition including higher partial waves Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 106 - 56pp
Keywords Lattice QCD; Lattice Quantum Field Theory; Scattering Amplitudes
Abstract We present an implementation of the relativistic three-particle quantization condition including both s- and d-wave two-particle channels. For this, we develop a systematic expansion of the three-particle K matrix, K-df,K-3, about threshold, which is the generalization of the effective range expansion of the two-particle K matrix, K-2. Relativistic invariance plays an important role in this expansion. We find that d-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the threshold three-particle state on the two-particle d-wave scattering amplitude, and use this to test our implementation. We show how strong two-particle d-wave interactions can lead to significant effects on the finite-volume three-particle spectrum, including the possibility of a generalized three-particle Efimov-like bound state. We also explore the application to the 3 pi(+) system, which is accessible to lattice QCD simulations, where we study the sensitivity of the spectrum to the components of K-df,K-3. Finally, we investigate the circumstances under which the quantization condition has unphysical solutions.
Address [Blanton, Tyler D.; Sharpe, Stephen R.] Univ Washington, Dept Phys, 3910 15th Ave NE, Seattle, WA 98195 USA, Email: blanton1@uw.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000462325900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3953
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Bijnens, J.; Husek, T.; Romero-Lopez, F.; Sharpe, S.R.; Sjo, M.
Title The three-pion K-matrix at NLO in ChPT Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 03 Issue 3 Pages 048 - 43pp
Keywords Chiral Lagrangian; Hadronic Spectroscopy; Structure and Interactions; Lattice QCD
Abstract The three-particle K-matrix, K-df,K-3, is a scheme-dependent quantity that parametrizes short-range three-particle interactions in the relativistic-field-theory three-particle finite-volume formalism. In this work, we compute its value for systems of three pions in all isospin channels through next-to-leading order in Chiral Perturbation Theory, generalizing previous work done at maximum isospin. We obtain analytic expressions through quadratic order (or cubic order, in the case of zero isospin) in the expansion about the three-pion threshold.
Address [Baeza-Ballesteros, Jorge] Univ Valencia, IFIC, CSIC, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001178200000005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6006
Permanent link to this record
 

 
Author Bernard, V.; Passemar, E.
Title Chiral extrapolation of the strangeness changing scalar K pi form factor Type Journal Article
Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 04 Issue 4 Pages 001 - 18pp
Keywords Lattice QCD; Chiral Lagrangians
Abstract We perform a chiral extrapolation of lattice data on the scalar K pi form factor and the ratio of the kaon and pion decay constants within Chiral Perturbation Theory to two loops. We determine the value of the scalar form factor at zero momentum transfer, at the Callan-Treiman point and at its soft kaon analog as well as its slope. Results are in good agreement with their determination from experiment using the standard couplings of quarks to the W boson. The slope is however rather large. A study of the convergence of the chiral expansion is also performed.
Address [Bernard, Veronique] Univ Paris 11, Grp Phys Theor, IPN, CNRS, F-91406 Orsay, France, Email: bernard@ipno.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000277473100070 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 456
Permanent link to this record
 

 
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R.
Title Decay amplitudes to three hadrons from finite-volume matrix elements Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 04 Issue 4 Pages 113 - 44pp
Keywords Lattice QCD; Kaon Physics
Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K -> 3 pi weak decay, the isospin-breaking eta -> 3 pi QCD transition, and the electromagnetic gamma (*) -> 3 pi amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g – 2.
Address [Hansen, Maxwell T.] Univ Edinburgh, Sch Phys & Astron, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland, Email: maxwell.hansen@ed.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640574400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4789
Permanent link to this record
 

 
Author Martinez Torres, A.; Oset, E.; Prelovsek, S.; Ramos, A.
Title Reanalysis of lattice QCD spectra leading to the Ds0*(2317) and Ds1*(2460) Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 05 Issue 5 Pages 153 - 22pp
Keywords Lattice QCD; Phenomenological Models; QCD
Abstract We perform a reanalysis of the energy levels obtained in a recent lattice QCD simulation, from where the existence of bound states of KD and KD* are induced and identified with the narrow D-s0*(2317) and D-s1*(2460) resonances. The reanalysis is done in terms of an auxiliary potential, employing a single-channel basis KD(*()), and a two-channel basis KD(*()), eta D-s(()*()). By means of an extended Luscher method we determine poles of the continuum t-matrix, bound by about 40 MeV with respect to the KD and KD* thresholds, which we identify with the D-s0*(2317) and D-s1*(2460) resonances. Using a sum rule that reformulates Weinberg compositeness condition we can determine that the state D-s0*(2317) contains a KD component in an amount of about 70%, while the state D-s1*(2460) contains a similar amount of KD*. We argue that the present lattice simulation results do not still allow us to determine which are the missing channels in the bound state wave functions and we discuss the necessary information that can lead to answer this question.
Address [Martinez Torres, A.] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, SP, Brazil, Email: amartine@if.usp.br;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000355346500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2258
Permanent link to this record