|   | 
Details
   web
Records
Author Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F.
Title Do we have any hope of detecting scattering between dark energy and baryons through cosmology? Type Journal Article
Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 493 Issue 1 Pages 1139-1152
Keywords cosmic background radiation; cosmological parameters; cosm logy: observations; dark energy; large-scale structure of Universe
Abstract We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the cosmic microwave background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections sigma(xb) similar to O(b), which are generically excluded by non-cosmological probes such as collider searches or precision gravity tests, only leave an insignificant imprint on the observables considered. In the case of the CMB temperature power spectrum, the only imprint consists in a sub-per cent enhancement or depletion of power (depending whether or not the dark energy equation of state lies above or below -1) at very low multipoles, which is thus swamped by cosmic variance. These effects are explained in terms of differences in how gravitational potentials decay in the presence of a dark energy-baryon scattering, which ultimately lead to an increase or decrease in the late-time integrated Sachs-Wolfe power. Even smaller related effects are imprinted on the matter power spectrum. The imprints on the CMB are not expected to be degenerate with the effects due to altering the dark energy sound speed. We conclude that, while strongly appealing, the prospects for a direct detection of dark energy through cosmology do not seem feasible when considering realistic dark energy-baryon cross-sections. As a caveat, our results hold to linear order in perturbation theory.
Address [Vagnozzi, Sunny] Univ Cambridge, Kat Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000518156100081 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4320
Permanent link to this record
 

 
Author Anderson, L. et al; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples Type Journal Article
Year 2014 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 441 Issue 1 Pages 24-62
Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe
Abstract We present a one per cent measurement of the cosmic distance scale from the detections of the baryon acoustic oscillations (BAO) in the clustering of galaxies from the Baryon Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III. Our results come from the Data Release 11 (DR11) sample, containing nearly one million galaxies and covering approximately 8500 square degrees and the redshift range 0.2 < z < 0.7. We also compare these results with those from the publicly released DR9 and DR10 samples. Assuming a concordance A cold dark matter (ACDM) cosmological model, the DR11 sample covers a volume of 13 Gpc(3) and is the largest region of the Universe ever surveyed at this density. We measure the correlation function and power spectrum, including density- field reconstruction of the BAO feature. The acoustic features are detected at a significance of over 7s in both the correlation function and power spectrum. Fitting for the position of the acoustic features measures the distance relative to the sound horizon at the drag epoch, r(d), which has a value of r(d,fid) = 149.28 Mpc in our fiducial cosmology. We find D-V = (1264 +/- 25 Mpc)(r(d)/r(d,fid)) at z = 0.32 and D-V = (2056 +/- 20 Mpc)(r(d)/r(d,fid)) at z = 0.57. At 1.0 per cent, this latter measure is the most precise distance constraint ever obtained from a galaxy survey. Separating the clustering along and transverse to the line of sight yields measurements at z = 0.57 of D-A = (1421 +/- 20 Mpc)(r(d)/r(d,fid)) and H = (96.8 +/- 3.4 kms(-1) Mpc(-1))(r(d),(fid)/r(d)). Our measurements of the distance scale are in good agreement with previous BAO measurements and with the predictions from cosmic microwave background data for a spatially flat CDM model with a cosmological constant.
Address [Anderson, Lauren; Bhardwaj, Vaishali] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: djschlegel@lbl.gov;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000336249300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1791
Permanent link to this record
 

 
Author Villaescusa-Navarro, F.; Vogelsberger, M.; Viel, M.; Loeb, A.
Title Neutrino signatures on the high-transmission regions of the Lyman alpha forest Type Journal Article
Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 431 Issue 4 Pages 3670-3677
Keywords neutrinos; intergalactic medium; quasars: absorption lines; cosmology: theory; large-scale structure of Universe
Abstract We quantify the impact of massive neutrinos on the statistics of low-density regions in the intergalactic medium as probed by the Lyman alpha forest at redshifts z = 2.2-4. Based on mock but realistic quasar (QSO) spectra extracted from hydrodynamic simulations with cold dark matter, baryons and neutrinos, we find that the probability distribution of weak Lyman alpha absorption features, as sampled by Lyman alpha flux regions at high transmissivity, is strongly affected by the presence of massive neutrinos. We show that systematic errors affecting the Lyman alpha forest reduce but do not erase the neutrino signal. Using the Fisher matrix formalism, we conclude that the sum of the neutrino masses can be measured, using the method proposed in this paper, with a precision smaller than 0.4 eV using a catalogue of 200 high-resolution (signal-to-noise ratio similar to 100) QSO spectra. This number reduces to 0.27 eV by making use of reasonable priors in the other parameters that also affect the statistics of the high-transitivity regions of the Lyman alpha forest. The constraints obtained with this method can be combined with independent bounds from the cosmic microwave background, large-scale structures and measurements of the matter power spectrum from the Lyman alpha forest to produce tighter upper limits on the sum of the masses of the neutrinos.
Address Univ Valencia, IFIC, CSIC, E-46071 Valencia, Spain, Email: viel@oats.inaf.it
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000319479000057 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1458
Permanent link to this record
 

 
Author Manera, M.; Scoccimarro, R.; Percival, W.J.; Samushia, L.; McBride, C.K.; Ross, A.J.; Sheth, R.K.; White, M.; Reid, B.A.; Sanchez, A.G.; de Putter, R.; Xu, X.Y.; Berlind, A.A.; Brinkmann, J.; Maraston, C.; Nichol, B.; Montesano, F.; Padmanabhan, N.; Skibba, R.A.; Tojeiro, R.; Weaver, B.A.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: a large sample of mock galaxy catalogues Type Journal Article
Year 2013 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 428 Issue 2 Pages 1036-1054
Keywords galaxies: haloes; large-scale structure of Universe
Abstract We present a fast method for producing mock galaxy catalogues that can be used to compute the covariance of large-scale clustering measurements and test analysis techniques. Our method populates a second-order Lagrangian perturbation theory (2LPT) matter field, where we calibrate masses of dark matter haloes by detailed comparisons with N-body simulations. We demonstrate that the clustering of haloes is recovered at similar to 10 per cent accuracy. We populate haloes with mock galaxies using a halo occupation distribution (HOD) prescription, which has been calibrated to reproduce the clustering measurements on scales between 30 and 80 h(-1) Mpc. We compare the sample covariance matrix from our mocks with analytic estimates, and discuss differences. We have used this method to make catalogues corresponding to Data Release 9 of the Baryon Oscillation Spectroscopic Survey (BOSS), producing 600 mock catalogues of the 'CMASS' galaxy sample. These mocks have enabled detailed tests of methods and errors, and have formed an integral part of companion analyses of these galaxy data.
Address Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England, Email: marc.manera@port.ac.uk
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000318229000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1471
Permanent link to this record
 

 
Author Anderson, L. et al; de Putter, R.; Mena, O.
Title The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume (down) 427 Issue 4 Pages 3435-3467
Keywords cosmological parameters; cosmology: observations; dark energy; distance scale; large-scale structure of Universe
Abstract We present measurements of galaxy clustering from the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey III (SDSS-III). These use the Data Release 9 (DR9) CMASS sample, which contains 264 283 massive galaxies covering 3275 square degrees with an effective redshift z = 0.57 and redshift range 0.43 < z < 0.7. Assuming a concordance Lambda CDM cosmological model, this sample covers an effective volume of 2.2 Gpc(3), and represents the largest sample of the Universe ever surveyed at this density, (n) over bar approximate to 3 x 10(-4) h(-3) Mpc(3). We measure the angle-averaged galaxy correlation function and power spectrum, including density-field reconstruction of the baryon acoustic oscillation (BAO) feature. The acoustic features are detected at a significance of 5 sigma in both the correlation function and power spectrum. Combining with the SDSS-II luminous red galaxy sample, the detection significance increases to 6.7 sigma. Fitting for the position of the acoustic features measures the distance to z = 0.57 relative to the sound horizon D-V/r(s) = 13.67 +/ 0.22 at z = 0.57. Assuming a fiducial sound horizon of 153.19 Mpc, which matches cosmic microwave background constraints, this corresponds to a distance D-V (z = 0.57) = 2094 +/- 34 Mpc. At 1.7 per cent, this is the most precise distance constraint ever obtained from a galaxy survey. We place this result alongside previous BAO measurements in a cosmological distance ladder and find excellent agreement with the current supernova measurements. We use these distance measurements to constrain various cosmological models, finding continuing support for a flat Universe with a cosmological constant.
Address [Anderson, Lauren] Univ Washington, Dept Astron, Seattle, WA 98195 USA, Email: nikhil.padmanabhan@yale.edu;
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000314421000014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1319
Permanent link to this record