|   | 
Details
   web
Records
Author Restrepo, D.; Taoso, M.; Valle, J.W.F.; Zapata, O.
Title Gravitino dark matter and neutrino masses with bilinear R-parity violation Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 85 Issue 2 Pages 023523 - 7pp
Keywords
Abstract Bilinear R-parity violation provides an attractive origin for neutrino masses and mixings. In such schemes the gravitino is a viable decaying dark matter particle whose R-parity violating decays lead to monochromatic photons with rates accessible to astrophysical observations. We determine the parameter region allowed by gamma-ray line searches, dark matter relic abundance, and neutrino oscillation data, obtaining a limit on the gravitino mass m((G) over tilde) less than or similar to 1-10 GeV corresponding to a relatively low reheat temperature T-R less than or similar to few x 10(7)-10(8) GeV. Neutrino mass and mixing parameters may be reconstructed at accelerator experiments like the Large Hadron Collider.
Address [Restrepo, Diego] Univ Antioquia, Inst Fis, Medellin 1226, Colombia, Email: restrepo@udea.edu.co
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000299932700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 899
Permanent link to this record
 

 
Author de Campos, F.; Eboli, O.J.P.; Hirsch, M.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.
Title Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 82 Issue 7 Pages 075002 - 8pp
Keywords
Abstract The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
Address [de Campos, F.] Univ Estadual Paulista, Dept Quim & Fis, Guaratingueta, SP, Brazil, Email: camposc@feg.unesp.br
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000282570100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 367
Permanent link to this record