toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Menendez, J. url  doi
openurl 
  Title Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 08 Issue 8 Pages 030 - 22pp  
  Keywords Neutrino Physics; Effective Field Theories  
  Abstract Coherent Elastic neutrino-Nucleus Scattering (CE nu NS), a process recently measured for the first time at ORNL's Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CE nu NS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at the COHERENT experiment.  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest, E-46980 Valencia, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561296500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4502  
Permanent link to this record
 

 
Author Cepedello, R.; Hirsch, M.; Rocha-Moran, P.; Vicente, A. url  doi
openurl 
  Title Minimal 3-loop neutrino mass models and charged lepton flavor violation Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 08 Issue 8 Pages 067 - 37pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We study charged lepton flavor violation for the three most popular 3-loop Majorana neutrino mass models. We call these models “minimal” since their particle content correspond to the minimal sets for which genuine 3-loop models can be constructed. In all the three minimal models the neutrino mass matrix is proportional to some powers of Standard Model lepton masses, providing additional suppression factors on top of the expected loop suppression. To correctly explain neutrino masses, therefore large Yukawa couplings are needed in these models. We calculate charged lepton flavor violating observables and find that the three minimal models survive the current constraints only in very narrow regions of their parameter spaces.  
  Address [Cepedello, Ricardo; Hirsch, Martin; Vicente, Avelino] Univ Valencia, Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: ricepe@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000565216600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4522  
Permanent link to this record
 

 
Author Coloma, P.; Lopez-Pavon, J.; Rosauro-Alcaraz, S.; Urrea, S. url  doi
openurl 
  Title New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 08 Issue 8 Pages 065 - 33pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We study the capabilities of the DUNE near detector to probe deviations from unitarity of the leptonic mixing matrix, the 3+1 sterile formalism and Non-Standard Interactions affecting neutrino production and detection. We clarify the relation and possible mappings among the three formalisms at short-baseline experiments, and we add to current analyses in the literature the study of the nu(mu)-> nu(tau) appearance channel. We study in detail the impact of spectral uncertainties on the sensitivity to new physics using the DUNE near detector, which has been widely overlooked in the literature. Our analysis shows that this plays an important role on the results and, in particular, that it can lead to a strong reduction in the sensitivity to sterile neutrinos from nu(mu)-> nu(e) transitions, by more than two orders of magnitude. This stresses the importance of a joint experimental and theoretical effort to improve our understanding of neutrino nucleus cross sections, as well as hadron production uncertainties and beam focusing effects. Nevertheless, even with our conservative and more realistic implementation of systematic uncertainties, we find that an improvement over current bounds in the new physics frameworks considered is generally expected if spectral uncertainties are below the 5% level.  
  Address [Coloma, Pilar; Rosauro-Alcaraz, Salvador] Univ Autonoma Madrid, Inst Fis Teor, UAM CSIC, Calle Nicolas Cabrera 13-15, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000686712300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4944  
Permanent link to this record
 

 
Author Aparici, A.; Herrero-Garcia, J.; Rius, N.; Santamaria, A. url  doi
openurl 
  Title On the nature of the fourth generation neutrino and its implications Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 07 Issue 7 Pages 030 - 31pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We consider the neutrino sector of a Standard Model with four generations. While the three light neutrinos can obtain their masses from a variety of mechanisms with or without new neutral fermions, fourth-generation neutrinos need at least one new relatively light right-handed neutrino. If lepton number is not conserved this neutrino must have a Majorana mass term whose size depends on the underlying mechanism for lepton number violation. Majorana masses for the fourth-generation neutrinos induce relative large two-loop contributions to the light neutrino masses which could be even larger than the cosmological bounds. This sets strong limits on the mass parameters and mixings of the fourth-generation neutrinos.  
  Address [Aparici, Alberto] Univ Valencia, CSIC, Dept Fis Teor, Valencia 46071, Spain, Email: alberto.aparici@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307298400030 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1157  
Permanent link to this record
 

 
Author Barenboim, G.; Rasero, J. url  doi
openurl 
  Title Electroweak baryogenesis window in non standard cosmologies Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 07 Issue 7 Pages 028 - 20pp  
  Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics  
  Abstract In this work we show that the new bounds on the Higgs mass are more than difficult to reconcile with the strong constraints on the physical parameters of the Standard Model and the Minimal Supersymmetric Standard Model imposed by the preservation of the baryon asymmetry. This bound can be weakened by assuming a nonstandard cosmology at the time of the electroweak phase transition, reverting back to standard cosmology by BBN time. Two explicit examples are an early period of matter dominated expansion due to a heavy right handed neutrino (see-saw scale), or a nonstandard braneworld expansion.  
  Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307298400028 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1158  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva