|   | 
Details
   web
Records
Author Yang, W.Q.; Mena, O.; Pan, S.; Di Valentino, E.
Title Dark sectors with dynamical coupling Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 100 Issue 8 Pages 083509 - 11pp
Keywords
Abstract Coupled dark matter-dark energy scenarios arc modeled via a dimensionless parameter xi, which controls the strength of their interaction. While this coupling is commonly assumed to be constant, there is no underlying physical law or symmetry that forbids a time-dependent xi parameter. The most general and complete interacting scenarios between the two dark sectors should therefore allow for such a possibility, and it is the main purpose of this study to constrain two possible and well-motivated coupled cosmologies by means of the most recent and accurate early- and late-time universe observations. We find that CMB data alone prefer xi(z) > 0 and therefore a smaller amount of dark matter, alleviating some crucial and well-known cosmological data tensions. An objective assessment of the Bayesian evidence for the coupled models explored here shows no particular preference for the presence of a dynamical dark sector coupling.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000489039100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4166
Permanent link to this record
 

 
Author Ternes, C.A.; Gariazzo, S.; Hajjar, R.; Mena, O.; Sorel, M.; Tortola, M.
Title Neutrino mass ordering at DUNE: An extra nu bonus Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 100 Issue 9 Pages 093004 - 10pp
Keywords
Abstract We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being operational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti) neutrinos travel, provide ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through Earth. Crucially, muon capture by argon provides excellent charge tagging, allowing us to disentangle the neutrino and antineutrino signature. This is an important extra benefit of having a liquid argon time projection chamber as a far detector, that could render an similar to 3.5 sigma extraction of the mass ordering after approximately 7 yr of exposure.
Address [Ternes, Christoph A.; Gariazzo, Stefano; Hajjar, Rasmi; Mena, Olga; Sorel, Michel; Tortola, Mariam] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: chternes@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000498060600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4205
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Villanueva-Domingo, P.
Title Dark matter microphysics and 21 cm observations Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 99 Issue 2 Pages 023522 - 12pp
Keywords
Abstract Dark matter interactions with massless or very light standard model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g., early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225,Blvd Triomphe, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000456291400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3885
Permanent link to this record
 

 
Author Gariazzo, S.; Mena, O.
Title Cosmology-marginalized approaches in Bayesian model comparison: The neutrino mass as a case study Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 99 Issue 2 Pages 021301 - 6pp
Keywords
Abstract We propose here a novel method which singles out the a priori unavoidable dependence on the underlying cosmological model when extracting parameter constraints, providing robust limits which only depend on the considered dataset. Interestingly, when dealing with several possible cosmologies and interpreting the Bayesian preference in terms of the Gaussian statistical evidence, the preferred model is much less favored than when only two cases are compared. As a working example, we apply our approach to the cosmological neutrino mass bounds, which play a fundamental role not only in establishing the contribution of relic neutrinos to the dark matter of the Universe but also in the planning of future experimental searches of the neutrino character and of the neutrino mass ordering.
Address [Gariazzo, S.; Mena, O.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain, Email: gariazzo@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000456800000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3893
Permanent link to this record
 

 
Author Vagnozzi, S.; Dhawan, S.; Gerbino, M.; Freese, K.; Goobar, A.; Mena, O.
Title Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) >=-1 are tighter than those obtained in Lambda CDM Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume (down) 98 Issue 8 Pages 083501 - 20pp
Keywords
Abstract We explore cosmological constraints on the sum of the three active neutrino masses M-v in the context of dynamical dark energy (DDE) models with equation of state (EoS) parametrized as a function of redshift z by w(z) = w(0) + w(a)z/ (1 + z), and satisfying w(z) >= -1 for all z. We make use of cosmic microwave background data from the Planck satellite, baryon acoustic oscillation measurements, and supernovae la luminosity distance measurements, and perform a Bayesian analysis. We show that, within these models, the bounds on M-v do not degrade with respect to those obtained in the Lambda CDM case; in fact, the bounds arc slightly tighter, despite the enlarged parameter space. We explain our results based on the observation that, for fixed choices of w(0), w(a) such that w(z) >= -1 (but not w = -1 for all z), the upper limit on M-v is tighter than the Lambda CDM limit because of the well-known degeneracy between w and M-v. The Bayesian analysis we have carried out then integrates over the possible values of w(0)-w(a) such that w(z) >= -1, all of which correspond to tighter limits on M-v than the Lambda CDM limit. We find a 95% credible interval (C.I.) upper bound of M-v < 0.13 eV. This bound can be compared with the 95% C.I. upper bounds of M-v < 0.16 eV, obtained within the Lambda CDM model, and M-v < 0.41 eV, obtained in a DDE model with arbitrary EoS (which allows values of w < -1). Contrary to the results derived for DDE models with arbitrary EoS, we find that a dark energy component with w(z) >= -1 is unable to alleviate the tension between high-redshift observables and direct measurements of the Hubble constant H o . Finally, in light of the results of this analysis, we also discuss the implications for DDE models of a possible determination of the neutrino mass ordering by laboratory searches.
Address [Vagnozzi, Sunny; Dhawan, Suhail; Gerbino, Martina; Freese, Katherine; Goobar, Ariel] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden, Email: sunny.vagnozzi@fysik.su.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000446136900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3749
Permanent link to this record