toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author ANTARES Collaboration (Ageron, M. et al); Aguilar, J.A.; Bigongiari, C.; Carmona, E.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Roca, V.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title ANTARES: The first undersea neutrino telescope Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 656 Issue 1 Pages 11-38  
  Keywords Neutrino; Astroparticle; Neutrino astronomy; Deep sea detector; Marine technology; DWDM; Photomultiplier tube; Submarine cable; Wet mateable connector  
  Abstract The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.  
  Address [Barbarito, E; Cassano, B; Ceres, A; Circella, M; Fiorello, C; Mongelli, M; Montaruli, T; Ruppi, M] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy, Email: Marco.Circella@ba.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296129100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 785  
Permanent link to this record
 

 
Author Panes, B.; Eckner, C.; Hendriks, L.; Caron, S.; Dijkstra, K.; Johannesson, G.; Ruiz de Austri, R.; Zaharijas, G. url  doi
openurl 
  Title Identification of point sources in gamma rays using U-shaped convolutional neural networks and a data challenge Type Journal Article
  Year 2021 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume (down) 656 Issue Pages A62 - 18pp  
  Keywords catalogs; gamma rays: general; astroparticle physics; methods: numerical; methods: data analysis; techniques: image processing  
  Abstract Context. At GeV energies, the sky is dominated by the interstellar emission from the Galaxy. With limited statistics and spatial resolution, accurately separating point sources is therefore challenging. Aims. Here we present the first application of deep learning based algorithms to automatically detect and classify point sources from gamma-ray data. For concreteness we refer to this approach as AutoSourceID. Methods. To detect point sources, we utilized U-shaped convolutional networks for image segmentation and k-means for source clustering and localization. We also explored the Centroid-Net algorithm, which is designed to find and count objects. Using two algorithms allows for a cross check of the results, while a combination of their results can be used to improve performance. The training data are based on 9.5 years of exposure from The Fermi Large Area Telescope (Fermi-LAT) and we used source properties of active galactic nuclei (AGNs) and pulsars (PSRs) from the fourth Fermi-LAT source catalog in addition to several models of background interstellar emission. The results of the localization algorithm are fed into a classification neural network that is trained to separate the three general source classes (AGNs, PSRs, and FAKE sources). Results. We compared our localization algorithms qualitatively with traditional methods and find them to have similar detection thresholds. We also demonstrate the robustness of our source localization algorithms to modifications in the interstellar emission models, which presents a clear advantage over traditional methods. The classification network is able to discriminate between the three classes with typical accuracy of similar to 70%, as long as balanced data sets are used in classification training. We published online our training data sets and analysis scripts and invite the community to join the data challenge aimed to improve the localization and classification of gamma-ray point sources.  
  Address [Panes, Boris] Pontificia Univ Catolica Chile, Ave Vicuna Mackenna 4860, Macul, Region Metropol, Chile, Email: bapanes@gmail.com  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000725877600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5053  
Permanent link to this record
 

 
Author Marinas, C.; Vos, M. doi  openurl
  Title The Belle-II DEPFET pixel detector: A step forward in vertexing in the superKEKB flavour factory Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 650 Issue 1 Pages 59-63  
  Keywords SuperKEKB; Belle-II; DEPFET; Pixel detector; ASIC; Mechanics; Cooling; Resolution  
  Abstract An upgrade of the successful asymmetric e(+)e(-) collider in KEK (Tsukuba, Japan) is foreseen by the fall of 2013. This new Super Flavor Factory will deliver an increased instantaneous luminosity of up to L = 8 x 10(35) cm(-2) s(-1), 40 times larger than the current KEKB machine. To exploit these new conditions and provide high precision measurements of the decay vertex of the B meson systems, a new silicon vertex detector will be operated in Belle. This new detector will consist of two layers of DEPFET Active Pixel Sensors as close as possible to the interaction point. DEPFET is a field effect transistor, with an additional deep implant underneath the channel's gate, integrated on a completely depleted bulk. This technology offers detection and an in-pixel amplification stage, while keeping low the power consumption. Under these conditions, thin sensors with small pixel size and low intrinsic noise are possible. In this article, an overview of the full system will be described, including the sensor, the front-end electronics and both the mechanical and thermal proposed solutions as well as the expected performance.  
  Address [Marinas, C; Vos, M] CSIC UVEG, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: Carlos.Marinas.Pardo@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295106500015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 768  
Permanent link to this record
 

 
Author Andricek, L. et al; Lacasta, C.; Marinas, C.; Vos, M. doi  openurl
  Title Intrinsic resolutions of DEPFET detector prototypes measured at beam tests Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 638 Issue 1 Pages 24-32  
  Keywords Silicon pixel detector; Detector resolution; Spatial resolution; DEPFET; Beam test  
  Abstract The paper is based on the data of the 2009 DEPFET beam test at CERN SPS. The beam test used beams of pions and electrons with energies between 40 and 120 GeV, and the sensors tested were prototypes with thickness of 450 μm and pixel pitch between 20 and 32 μm. Intrinsic resolutions of the detectors are calculated by disentangling the contributions of measurement errors and multiple scattering in tracking residuals. Properties of the intrinsic resolution estimates and factors that influence them are discussed. For the DEPFET detectors in the beam test, the calculation yields intrinsic resolutions of approximate to 1 μm, with a typical accuracy of 0.1 μm. Bias scan, angle scan, and energy scan are used as example studies to show that the intrinsic resolutions are a useful tool in studies of detector properties. With sufficiently precise telescopes, detailed resolution maps can be constructed and used to study and optimize detector performance.  
  Address [Dolezal, Z.; Drasal, Z.; Kodys, P.; Kvasnicka, P.; Malina, L.; Scheirich, J.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, CR-18000 Prague, Czech Republic, Email: peter.kodys@mff.cuni.cz  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000290082600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 618  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 626 Issue Pages 128-143  
  Keywords AMADEUS; ANTARES; Neutrino telescope; Acoustic neutrino detection; Thermo-acoustic model  
  Abstract The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around – 145 dB re 1 V/mu Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.  
  Address [Anton, G.; Auer, R.; Eberl, T.; Fehr, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Kretschmer, W.; Lahmann, R.; Laschinsky, H.; Motz, H.; Neff, M.; Ostasch, R.; Richardt, C.; Schoeck, F.; Shanidze, R.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: robert.lahmann@physik.uni-erlangen.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286793800020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 578  
Permanent link to this record
 

 
Author NEMO-3 Collaboration (Argyriades, J. et al); Diaz, J.; Martin-Albo, J.; Monrabal, F.; Novella, P.; Serra, L.; Yahlali, N. url  doi
openurl 
  Title Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 625 Issue 1 Pages 20-28  
  Keywords Scintillation; Photomultiplier; Plastic scintillators; Optical photon transport; GEANT 4; Double beta decay  
  Abstract We have constructed a GEANT4-based detailed software model of photon transport in plastic sontillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutnnoless double beta decay We compare our simulations to measurements using conversion electrons from a calibration source of (BI)-B-207 and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account In this article we briefly describe our modeling approach and results of our studies.  
  Address [Lang, K.; Pahlka, R. B.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285432400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 587  
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Performance of the front-end electronics of the ANTARES neutrino telescope Type Journal Article
  Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume (down) 622 Issue 1 Pages 59-73  
  Keywords Neutrino telescope; Photomultiplier tube; Front-end electronics; ASIC  
  Abstract ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip: results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.  
  Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, CSIC, Valencia 46071, Spain, Email: s.loucatos@cea.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282530300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 363  
Permanent link to this record
 

 
Author ATLAS Collaboration url  doi
openurl 
  Title A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Type Journal Article
  Year 2022 Publication Nature Abbreviated Journal Nature  
  Volume (down) 607 Issue 7917 Pages 52-59  
  Keywords  
  Abstract The standard model of particle physics(1-4) describes the known fundamental particles and forces that make up our Universe, with the exception of gravity. One of the central features of the standard model is a field that permeates all of space and interacts with fundamental particles(5-9). The quantum excitation of this field, known as the Higgs field, manifests itself as the Higgs boson, the only fundamental particle with no spin. In 2012, a particle with properties consistent with the Higgs boson of the standard model was observed by the ATLAS and CMS experiments at the Large Hadron Collider at CERN10,11. Since then, more than 30 times as many Higgs bosons have been recorded by the ATLAS experiment, enabling much more precise measurements and new tests of the theory. Here, on the basis of this larger dataset, we combine an unprecedented number of production and decay processes of the Higgs boson to scrutinize its interactions with elementary particles. Interactions with gluons, photons, and W and Z bosons-the carriers of the strong, electromagnetic and weak forces-are studied in detail. Interactions with three third-generation matter particles (bottom (b) and top (t) quarks, and tau leptons (tau)) are well measured and indications of interactions with a second-generation particle (muons, mu) are emerging. These tests reveal that the Higgs boson discovered ten years ago is remarkably consistent with the predictions of the theory and provide stringent constraints on many models of new phenomena beyond the standard model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000820564200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5521  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O. url  doi
openurl 
  Title Search for magnetic monopoles produced via the Schwinger mechanism Type Journal Article
  Year 2022 Publication Nature Abbreviated Journal Nature  
  Volume (down) 602 Issue 7895 Pages 63-67  
  Keywords  
  Abstract Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism(1). By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist(2). Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model(3-7) but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size(8,9) and strong coupling to photons(2,10). Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe(11). It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 x 10(9), of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.  
  Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000750429600019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5191  
Permanent link to this record
 

 
Author Khachatryan, M. et al, Coloma, P. doi  openurl
  Title Electron-beam energy reconstruction for neutrino oscillation measurements Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume (down) 599 Issue 7886 Pages 565-570  
  Keywords  
  Abstract Neutrinos exist in one of three types or 'flavours'-electron, muon and tau neutrinos-and oscillate from one flavour to another when propagating through space. This phenomena is one of the few that cannot be described using the standard model of particle physics (reviewed in ref. (1)), and so its experimental study can provide new insight into the nature of our Universe (reviewed in ref. (2)). Neutrinos oscillate as a function of their propagation distance (L) divided by their energy (E). Therefore, experiments extract oscillation parameters by measuring their energy distribution at different locations. As accelerator-based oscillation experiments cannot directly measure E, the interpretation of these experiments relies heavily on phenomenological models of neutrino-nucleus interactions to infer E. Here we exploit the similarity of electron-nucleus and neutrino-nucleus interactions, and use electron scattering data with known beam energies to test energy reconstruction methods and interaction models. We find that even in simple interactions where no pions are detected, only a small fraction of events reconstruct to the correct incident energy. More importantly, widely used interaction models reproduce the reconstructed energy distribution only qualitatively and the quality of the reproduction varies strongly with beam energy. This shows both the need and the pathway to improve current models to meet the requirements of next-generation, high-precision experiments such as Hyper-Kamiokande (Japan)(3) and DUNE (USA)(4). Electron scattering measurements are shown to reproduce only qualitatively state-of-the-art lepton-nucleus energy reconstruction models, indicating that improvements to these particle-interaction models are required to ensure the accuracy of future high-precision neutrino oscillation experiments.  
  Address [Khachatryan, M.; Hauenstein, F.; Weinstein, L. B.] Old Domin Univ, Norfolk, VA USA, Email: adishka@mit.edu  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000722366200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5073  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva