|   | 
Details
   web
Records
Author de Medeiros Varzielas, I.; King, S.F.; Luhn, C.; Neder, T.
Title Spontaneous CP violation in multi-Higgs potentials with triplets of Delta(3n(2)) and Delta(6n(2)) Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 11 Issue 11 Pages 136 - 56pp
Keywords CP violation; Discrete Symmetries; Higgs Physics; Beyond Standard Model
Abstract Motivated by discrete flavour symmetry models, we analyse Spontaneous CP Violation (SCPV) for potentials involving three or six Higgs fi elds (both electroweak doublets and singlets) which fall into irreducible triplet representations of discrete symmetries belonging to the Delta(3n(2)) and Delta(6n(2)) series, including A(4), S-4, Delta(27) and Delta(54). For each case, we give the potential and fi nd various global minima for di ff erent regions of the parameter space of the potential. Using CP-odd basis Invariants that indicate the presence of Spontaneous CP Violation we separate the VEVs into those that do or do not violate CP. In cases where CP is preserved we reveal a CP symmetry of the potential that is preserved by those VEVs, otherwise we display a non-zero CP-odd Invariant. Finally we identify interesting cases where there is Spontaneous Geometrical CP Violation in which the VEVs have geometrical phases.
Address [Varzielas, Ivo de Medeiros; King, Stephen F.; Neder, Thomas] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: ivo.de@udo.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000416354700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3383
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A.
Title Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 11 Issue 11 Pages 063 - 26pp
Keywords CP violation; Discrete Symmetries; Neutrino Physics
Abstract CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both m2| without any assumptions between m2 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a 0 to the T-invariant limit m20. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly -independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase , at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin . A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.
Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000449817300002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3801
Permanent link to this record
 

 
Author Celis, A.; Fuentes-Martin, J.; Serodio, H.
Title A class of invisible axion models with FCNCs at tree level Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 12 Issue 12 Pages 167 - 53pp
Keywords Beyond Standard Model; CP violation; Global Symmetries
Abstract We build a class of invisible axion models with tree-level Flavor Changing Neutral Currents completely controlled by the fermion mixing matrices. The scalar sector of these models contains three-Higgs doublets and a complex scalar gauge singlet, with the same fermionic content as in the Standard Model. A horizontal Peccei-Quinn symmetry provides a solution to the strong CP problem and predicts the existence of a very light and weakly coupled pseudo-Goldstone boson, the invisible axion or familon. A phenomenological analysis is performed taking into account familon searches in rare kaon and muon decays, astrophysical considerations and axion searches via axion-photon conversion. Drastic differences are found in the axion properties of different models due to the strong hierarchy of the CKM matrix, making some of the models considered much more constrained than others. We also obtain that a rich variety of these models avoid the domain wall problem. A possible mechanism to protect the solution to the strong CP problem against gravitational effects is also discussed.
Address [Celis, Alejandro; Fuentes-Martin, Javier] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: alejandro.celis@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347160000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2067
Permanent link to this record
 

 
Author Bernabeu, J.
Title Symmetries and Their Breaking in the Fundamental Laws of Physics Type Journal Article
Year 2020 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume (up) 12 Issue 8 Pages 1316 - 27pp
Keywords flavour families; colour charges; gauge symmetries; chirality; discrete symmetries; neutrinos; spontaneous breaking
Abstract Symmetries in the Physical Laws of Nature lead to observable effects. Beyond the regularities and conserved magnitudes, the last few decades in particle physics have seen the identification of symmetries, and their well-defined breaking, as the guiding principle for the elementary constituents of matter and their interactions. Flavour SU(3) symmetry of hadrons led to the Quark Model and the antisymmetric requirement under exchange of identical fermions led to the colour degree of freedom. Colour became the generating charge for flavour-independent strong interactions of quarks and gluons in the exact colour SU(3) local gauge symmetry. Parity Violation in weak interactions led us to consider the chiral fields of fermions as the objects with definite transformation properties under the weak isospin SU(2) gauge group of the Unifying Electro-Weak SU(2) x U(1) symmetry, which predicted novel weak neutral current interactions. CP-Violation led to three families of quarks opening the field of Flavour Physics. Time-reversal violation has recently been observed with entangled neutral mesons, compatible with CPT-invariance. The cancellation of gauge anomalies, which would invalidate the gauge symmetry of the quantum field theory, led to Quark-Lepton Symmetry. Neutrinos were postulated in order to save the conservation laws of energy and angular momentum in nuclear beta decay. After the ups and downs of their mass, neutrino oscillations were discovered in 1998, opening a new era about their origin of mass, mixing, discrete symmetries and the possibility of global lepton-number violation through Majorana mass terms and Leptogenesis as the source of the matter-antimatter asymmetry in the universe. The experimental discovery of quarks and leptons and the mediators of their interactions, with physical observables in spectacular agreement with this Standard Theory, is the triumph of Symmetries. The gauge symmetry is exact only when the particles are massless. One needs a subtle breaking of the symmetry, providing the origin of mass without affecting the excellent description of the interactions. This is the Brout-Englert-Higgs Mechanism, which produces the Higgs Boson as a remnant, discovered at CERN in 2012. Open present problems are addressed with by searching the New Physics Beyond-the-Standard-Model.
Address [Bernabeu, Jose] Univ Valencia, Dept Theoret Phys, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000564717500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4523
Permanent link to this record
 

 
Author Drewes, M.; Georis, Y.; Hagedorn, C.; Klaric, J.
Title Low-scale leptogenesis with flavour and CP symmetries Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 12 Issue 12 Pages 044 - 113pp
Keywords Baryo-and Leptogenesis; Discrete Symmetries; Flavour Symmetries; Sterile or Heavy Neutrinos
Abstract We consider a type-I seesaw framework endowed with a flavour symmetry, belonging to the series of non-abelian groups increment (3 n(2)) and increment (6 n(2)), and a CP symmetry. Breaking these symmetries in a non-trivial way results in the right-handed neutrinos being degenerate in mass up to possible (further symmetry-breaking) splittings kappa and lambda, while the neutrino Yukawa coupling matrix encodes the entire flavour structure in the neutrino sector. For a fixed combination of flavour and CP symmetry and residual groups, this matrix contains five real free parameters. Four of them are determined by the light neutrino mass spectrum and by accommodating experimental data on lepton mixing well, while the angle theta(R) is related to right-handed neutrinos. We scrutinise for all four lepton mixing patterns, grouped into Case 1) through Case 3 b.1), the potential to generate the baryon asymmetry of the Universe through low-scale leptogenesis numerically and analytically. The main results are: a) the possible correlation of the baryon asymmetry and the Majorana phases, encoded in the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix, in certain instances; b) the possibility to generate the correct amount of baryon asymmetry for vanishing splittings kappa and lambda among the right-handed neutrinos as well as for large kappa, depending on the case and the specific choice of group theory parameters; c) the chance to produce sufficient baryon asymmetry for large active-sterile mixing angles, enabling direct experimental tests at current and future facilities, if theta(R) is close to a special value, potentially protected by an enhanced residual symmetry. We elucidate these results with representative examples of flavour and CP symmetries, which all lead to a good agreement with the measured values of the lepton mixing angles and, possibly, the current indication of the CP phase delta. We identify the CP-violating combinations relevant for low-scale leptogenesis, and show that the parametric dependence of the baryon asymmetry found in the numerical study can be understood well with their help.
Address [Drewes, M.; Georis, Y.; Klaric, J.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain La Neuve, Belgium, Email: marco.drewes@uclouvain.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000898830800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5435
Permanent link to this record