Bombacigno, F., Moretti, F., Boudet, S., & Olmo, G. J. (2023). Landau damping for gravitational waves in parity-violating theories. J. Cosmol. Astropart. Phys., 02(2), 009–29pp.
Abstract: We discuss how tensor polarizations of gravitational waves can suffer Landau damping in the presence of velocity birefringence, when parity symmetry is explicitly broken. In particular, we analyze the role of the Nieh-Yan and Chern-Simons terms in modified theories of gravity, showing how the gravitational perturbation in collisionless media can be characterized by a subluminal phase velocity, circumventing the well-known results of General Relativity and allowing for the appearance of the kinematic damping. We investigate in detail the connection between the thermodynamic properties of the medium, such as temperature and mass of the particles interacting with the gravitational wave, and the parameters ruling the parity violating terms of the models. In this respect, we outline how the dispersion relations can give rise in each model to different regions of the wavenumber space, where the phase velocity is subluminal, superluminal or does not exist. Quantitative estimates on the considered models indicate that the phenomenon of Landau damping is not detectable given the sensitivity of present-day instruments.
|
Falkowski, A., Gonzalez-Alonso, M., Palavric, A., & Rodriguez-Sanchez, A. (2024). Constraints on subleading interactions in beta decay Lagrangian. J. High Energy Phys., 02(2), 091–54pp.
Abstract: We discuss the effective field theory (EFT) for nuclear beta decay. The general quark-level EFT describing charged-current interactions between quarks and leptons is matched to the nucleon-level non-relativistic EFT at the OMeV momentum scale characteristic for beta transitions. The matching takes into account, for the first time, the effect of all possible beyond-the-Standard-Model interactions at the subleading order in the recoil momentum. We calculate the impact of all the Wilson coefficients of the leading and subleading EFT Lagrangian on the differential decay width in allowed beta transitions. As an example application, we show how the existing experimental data constrain the subleading Wilson coefficients corresponding to pseudoscalar, weak magnetism, and induced tensor interactions. The data display a 3.5 sigma evidence for nucleon weak magnetism, in agreement with the theory prediction based on isospin symmetry.
|
Chen, M. C., King, S. F., Medina, O., & Valle, J. W. F. (2024). Quark-lepton mass relations from modular flavor symmetry. J. High Energy Phys., 02(2), 160–28pp.
Abstract: The so-called Golden Mass Relation provides a testable correlation between charged-lepton and down-type quark masses, that arises in certain flavor models that do not rely on Grand Unification. Such models typically involve broken family symmetries. In this work, we demonstrate that realistic fermion mass relations can emerge naturally in modular invariant models, without relying on ad hoc flavon alignments. We provide a model-independent derivation of a class of mass relations that are experimentally testable. These relations are determined by both the Clebsch-Gordan coefficients of the specific finite modular group and the expansion coefficients of its modular forms, thus offering potential probes of modular invariant models. As a detailed example, we present a set of viable mass relations based on the Gamma 4 approximately equal to S4 symmetry, which have calculable deviations from the usual Golden Mass Relation.
|
Balaudo, A., Calore, F., De Romeri, V., & Donato, F. (2024). NAJADS: a self-contained framework for the direct determination of astrophysical J-factors. J. Cosmol. Astropart. Phys., 02(2), 001–33pp.
Abstract: Cosmological simulations play a pivotal role in understanding the properties of the dark matter (DM) distribution in both galactic and galaxy -cluster environments. The characterization of DM structures is crucial for informing indirect DM searches, aiming at the detection of the annihilation (or decay) products of DM particles. A fundamental quantity in these analyses is the astrophysical J -factor. In the DM phenomenology community, J -factors are typically computed through the semi -analytical modelling of the DM mass distribution, which is affected by large uncertainties. With the scope of addressing and possibly reducing these uncertainties, we present NAJADS, a self-contained framework to derive the DM J -factor directly from the raw simulations data. We show how this framework can be used to compute all -sky maps of the J -factor, automatically accounting for the complex 3D structure of the simulated halos and for the boosting of the signal due to the density fluctuations along the line of sight. After validating our code, we present a proof -of -concept application of NAJADS to a realistic halo from the IllustrisTNG suite, and exploit it to make a thorough comparison between our numerical approach and traditional semi -analytical methods. JCAP02(2024)001
|
Arbelaez, C., Cottin, G., Helo, J. C., Hirsch, M., & de Melo, T. B. (2025). Long-lived particle phenomenology in one-loop neutrino mass models with dark matter. J. High Energy Phys., 02(2), 049–22pp.
Abstract: Neutrino masses and dark matter (DM) might have a common origin. The scotogenic model can be considered the proto-type model realizing this idea, but many other variants exist. In this paper we explore the phenomemology of a particular DM neutrino mass model, containing a triplet scalar. We calculate the relic density and check for constraints from direct detection experiments. The parameter space of the model, allowed by these constraints, contains typically a long-lived or quasi-stable doubly charged scalar, that can be searched for at the LHC. We reinterpret existing searches to derive limits on the masses of the scalars of the model and estimate future sensitivities in the high-luminosity phase of the LHC. The searches we discuss can serve to constrain also many other 1-loop neutrino mass models.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2025). Search for a heavy charged Higgs boson decaying into a W boson and a Higgs boson in final states with leptons and b-jets in √s=13 TeV pp collisions with the ATLAS detector. J. High Energy Phys., 02(2), 143–69pp.
Abstract: This article presents a search for a heavy charged Higgs boson produced in association with a top quark and a bottom quark, and decaying into a W boson and a 125 GeV Higgs boson h. The search is performed in final states with one charged lepton, missing transverse momentum, and jets using proton-proton collision data at root s = 13 TeV recorded with the ATLAS detector during Run 2 of the LHC at CERN. This data set corresponds to a total integrated luminosity of 140 fb(-1). The search is conducted by examining the reconstructed invariant mass distribution of the Wh candidates for evidence of a localised excess in the charged Higgs boson mass range from 250 GeV to 3 TeV. No significant excess of data over the expected background is observed and 95% confidence-level upper limits between 2.8 pb and 1.2 fb are placed on the production cross-section times branching ratio for charged Higgs bosons decaying into Wh.
|
Villaescusa-Navarro, F., & Dalal, N. (2011). Cores and cusps in warm dark matter halos. J. Cosmol. Astropart. Phys., 03(3), 024–16pp.
Abstract: The apparent presence of large core radii in Low Surface Brightness galaxies has been claimed as evidence in favor of warm dark matter. Here we show that WDM halos do not have cores that are large fractions of the halo size: typically, r(core)/r(200) less than or similar to 10(-3). This suggests an astrophysical origin for the large cores observed in these galaxies, as has been argued by other authors.
|
Mangano, G., Miele, G., Pastor, S., Pisanti, O., & Sarikas, S. (2011). Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis. J. Cosmol. Astropart. Phys., 03(3), 035–18pp.
Abstract: The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis (BBN) is typically parameterized in terms of the effective number of neutrinos N-eff. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. In the present analysis we determine the upper bounds that BBN places on N-eff from primordial neutrino-antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations. We consider quite a wide range for the total lepton number in the neutrino sector, eta(nu) = eta(nu e) + eta(nu mu) + eta(nu tau) and the initial electron neutrino asymmetry eta(in)(nu e), solving the corresponding kinetic equations which rule the dynamics of neutrino (antineutrino) distributions in phase space due to collisions, pair processes and flavor oscillations. New bounds on both the total lepton number in the neutrino sector and the nu(e)-(nu) over bar (e) asymmetry at the onset of BBN are obtained fully exploiting the time evolution of neutrino distributions, as well as the most recent determinations of primordial H-2/H density ratio and He-4 mass fraction. Note that taking the baryon fraction as measured by WMAP, the H-2/H abundance plays a relevant role in constraining the allowed regions in the eta(nu)-eta(in)(nu e) plane. These bounds fix the maximum contribution of neutrinos with primordial asymmetries to N-eff as a function of the mixing parameter theta(13), and point out the upper bound N-eff less than or similar to 3.4. Comparing these results with the forthcoming measurement of N-eff by the Planck satellite will likely provide insight on the nature of the radiation content of the universe.
|
Barenboim, G., & Rasero, J. (2011). Baryogenesis from a right-handed neutrino condensate. J. High Energy Phys., 03(3), 097–15pp.
Abstract: We show that the baryon asymmetry of the Universe can be generated by a strongly coupled right handed neutrino condensate which also drives inflation. The resulting model has only a small number of parameters, which completely determine not only the baryon asymmetry of the Universe and the mass of the right handed neutrino but also the inflationary phase. This feature allows us to make predictions that will be tested by current and planned experiments. As compared to the usual approach our dynamical framework is both economical and predictive.
|
Choi, K. Y., Lopez-Fogliani, D. E., Muñoz, C., & Ruiz de Austri, R. (2010). Gamma-ray detection from gravitino dark matter decay in the μnu SSM. J. Cosmol. Astropart. Phys., 03(3), 028–14pp.
Abstract: The μnu SSM provides a solution to the mu-problem of the MSSM and explains the origin of neutrino masses by simply using right-handed neutrino superfields. Given that R-parity is broken in this model, the gravitino is a natural candidate for dark matter since its lifetime becomes much longer than the age of the Universe. We consider the implications of gravitino dark matter in the μnu SSM, analyzing in particular the prospects for detecting gamma rays from decaying gravitinos. If the gravitino explains the whole dark matter component, a gravitino mass larger than 20 GeV is disfavored by the isotropic diffuse photon background measurements. On the other hand, a gravitino with a mass range between 0.1 – 20 GeV gives rise to a signal that might be observed by the FERMI satellite. In this way important regions of the parameter space of the μnu SSM can be checked.
|