|   | 
Details
   web
Records
Author LISA Cosmology Working Group (Bartolo, N. et al); Figueroa, D.G.
Title Probing anisotropies of the Stochastic Gravitational Wave Background with LISA Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 11 Issue Pages 009 - 65pp
Keywords gravitational wave detectors; gravitational waves / sources; gravitational waves / theory; physics of the early universe
Abstract We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first discuss the main astrophysical and cosmological sources of SGWB which are characterized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis of the prospects of detectability of anisotropic features with LISA for individual multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise angular spectrum taking into account the specific scan strategy of the LISA detector. We analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic SGWB. We find that beta Omega(GW) similar to 2 x 10(-11) is required to observe a dipolar signal with LISA. The detector response to the quadrupole has a factor similar to 10(3) beta relative to that of the dipole. The characterization of the anisotropies, both from a theoretical perspective and from a map-making point of view, allows us to extract information that can be used to understand the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources.
Address [Bartolo, Nicola; Bertacca, Daniele; Peloso, Marco; Ricciardone, Angelo] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy, Email: angelo.ricciardone@pd.infn.it
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000899443700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5437
Permanent link to this record
 

 
Author Aja, B. et al; Gimeno, B.
Title The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors Type Journal Article
Year 2022 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (down) 11 Issue 11 Pages 044 - 29pp
Keywords dark matter experiments; axions; dark matter detectors
Abstract We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 μeV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
Address [Aja, Beatriz; Artal, Eduardo; de la Fuente, Luisa; Pablo Pascual, Juan] Univ Cantabria, Dept Ingn Comunicac, Plaza Ciencia, Santander 39005, Spain, Email: ajab@unican.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000934034600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5478
Permanent link to this record
 

 
Author Coves, A.; Maestre, H.; Archiles, R.; Andres, M.V.; Gimeno, B.
Title Surface-Impedance Formulation for Hollow-Core Waveguides Based on Subwavelength Gratings Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal IEEE Access
Volume (down) 10 Issue Pages 18843-18854
Keywords Electromagnetic waveguides; Optical waveguides; Planar waveguides; Gratings; Surface waves; Surface impedance; Optical surface waves; Surface impedance; hollow-core waveguide; surface-relief grating
Abstract A rigorous Surface Impedance (SI) formulation for planar waveguides is presented. This modal technique splits the modal analysis of the waveguide in two steps. First, we obtain the modes characteristic equations as a function of the SI and, second, we need to obtain the surface impedance values using either analytical or numerical methods. We validate the technique by comparison with well-known analytical cases: the parallel-plate waveguide with losses and the dielectric slab waveguide. Then, we analyze an optical hollow-core waveguide defined by two high-contrast subwavelength gratings validating our results by comparison with reported values. Finally, we show the potential of our formulation with the analysis of a THz hollow-core waveguide defined by two surface-relief subwavelength gratings, including material losses in our formulation.
Address [Coves, Angela; Maestre, Haroldo] Univ Miguel Hernandez Elche, Dept Commun Engn I3E, Elche 03202, Spain, Email: angela.coves@umh.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2169-3536 ISBN Medium
Area Expedition Conference
Notes WOS:000760714900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5139
Permanent link to this record
 

 
Author Barenboim, G.
Title Some Aspects About Pushing the CPT and Lorentz Invariance Frontier With Neutrinos Type Journal Article
Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics
Volume (down) 10 Issue Pages 813753 - 7pp
Keywords CPT symmetry; neutrino properties; lorentz violation; fundamental symmetries; discrete symmetries
Abstract The CPT symmetry, which combines Charge Conjugation, Parity, and Time Reversal, is a cornerstone of our model-building method, and its probable violation will endanger the most extended tool we presently utilize to explain physics, namely local relativistic quantum fields. However, the kaon system's conservation constraints appear to be rather severe. We will show in this paper that neutrino oscillation experiments can enhance this limit by many orders of magnitude, making them an excellent instrument for investigating the basis of our understanding of Nature. As a result, verifying CPT invariance does not evaluate a specific model, but rather the entire paradigm. Therefore, as the CPT's status in the neutrino sector, linked or not to Lorentz invariance violation, will be assessed at an unprecedented level by current and future long baseline experiments, distinguishing it from comparable experimental fingerprints coming from non-standard interactions is critical. Whether the entire paradigm or simply the conventional model of neutrinos is at jeopardy is significantly dependent on this.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000804003600001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5237
Permanent link to this record
 

 
Author Bas i Beneito, A.; Herrero-Garcia, J.; Vatsyayan, D.
Title Multi-component dark sectors: symmetries, asymmetries and conversions Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (down) 10 Issue 10 Pages 075 - 31pp
Keywords Models for Dark Matter; Particle Nature of Dark Matter
Abstract We study the relic abundance of several stable particles from a generic dark sector, including the possible presence of dark asymmetries. After discussing the different possibilities for stabilising multi-component dark matter, we analyse the final relic abundance of the symmetric and asymmetric dark matter components, paying special attention to the role of the unavoidable conversions between dark matter states. We find an exponential dependence of the asymmetries of the heavier components on annihilations and conversions. We conclude that having similar symmetric and asymmetric components is a natural outcome in many scenarios of multi-component dark matter. This has novel phenomenological implications, which we briefly discuss.
Address [Bas I Beneito, Arnau] Univ Valencia, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: arnau.bas@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000866484800002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5380
Permanent link to this record