toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bernard, V.; Passemar, E. url  doi
openurl 
  Title Chiral extrapolation of the strangeness changing scalar K pi form factor Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 04 Issue 4 Pages 001 - 18pp  
  Keywords Lattice QCD; Chiral Lagrangians  
  Abstract We perform a chiral extrapolation of lattice data on the scalar K pi form factor and the ratio of the kaon and pion decay constants within Chiral Perturbation Theory to two loops. We determine the value of the scalar form factor at zero momentum transfer, at the Callan-Treiman point and at its soft kaon analog as well as its slope. Results are in good agreement with their determination from experiment using the standard couplings of quarks to the W boson. The slope is however rather large. A study of the convergence of the chiral expansion is also performed.  
  Address [Bernard, Veronique] Univ Paris 11, Grp Phys Theor, IPN, CNRS, F-91406 Orsay, France, Email: bernard@ipno.in2p3.fr  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277473100070 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 456  
Permanent link to this record
 

 
Author Colonna, N.; Belloni, F.; Berthoumieux, E.; Calviani, M.; Domingo-Pardo, C.; Guerrero, C.; Karadimos, D.; Lederer, C.; Massimi, C.; Paradela, C.; Plag, R.; Praena, J.; Sarmento, R. doi  openurl
  Title Advanced nuclear energy systems and the need of accurate nuclear data: the n_TOF project at CERN Type Journal Article
  Year 2010 Publication Energy & Environmental Science Abbreviated Journal Energy Environ. Sci.  
  Volume (down) 3 Issue 12 Pages 1910-1917  
  Keywords  
  Abstract To satisfy the world's constantly increasing demand for energy, a suitable mix of different energy sources has to be devised. In this scenario, an important role could be played by nuclear energy, provided that major safety, waste and proliferation issues affecting current nuclear reactors are satisfactorily addressed. To this purpose, a large effort has been under way for a few years towards the development of advanced nuclear systems with the aim of closing the fuel cycle. Generation IV reactors, with full or partial waste recycling capability, accelerator driven systems, as well as new fuel cycles are the main options being investigated. The design of advanced systems requires improvements in basic nuclear data, such as cross-sections for neutron-induced reactions on actinides. In this paper, the main concepts of advanced reactor systems are described, together with the related needs of new and accurate nuclear data. The present activity in this field at the neutron facility n_TOF at CERN is discussed.  
  Address [Colonna, N.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy, Email: nicola.colonna@ba.infn.it  
  Corporate Author Thesis  
  Publisher Royal Soc Chemistry Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284590900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 319  
Permanent link to this record
 

 
Author Choi, K.Y.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title Gamma-ray detection from gravitino dark matter decay in the μnu SSM Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (down) 03 Issue 3 Pages 028 - 14pp  
  Keywords dark matter theory; supersymmetry and cosmology; gamma ray experiments  
  Abstract The μnu SSM provides a solution to the mu-problem of the MSSM and explains the origin of neutrino masses by simply using right-handed neutrino superfields. Given that R-parity is broken in this model, the gravitino is a natural candidate for dark matter since its lifetime becomes much longer than the age of the Universe. We consider the implications of gravitino dark matter in the μnu SSM, analyzing in particular the prospects for detecting gamma rays from decaying gravitinos. If the gravitino explains the whole dark matter component, a gravitino mass larger than 20 GeV is disfavored by the isotropic diffuse photon background measurements. On the other hand, a gravitino with a mass range between 0.1 – 20 GeV gives rise to a signal that might be observed by the FERMI satellite. In this way important regions of the parameter space of the μnu SSM can be checked.  
  Address [Choi, Ki-Young; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: kiyoung.choi@pusan.ac.kr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276103000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 464  
Permanent link to this record
 

 
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L. url  doi
openurl 
  Title The dark side of curvature Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume (down) 03 Issue 3 Pages 008 - 17pp  
  Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR  
  Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.  
  Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276103000026 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 465  
Permanent link to this record
 

 
Author Ellis, J.; Hodgkinson, R.N.; Lee, J.S.; Pilaftsis, A. url  doi
openurl 
  Title Flavour geometry and effective Yukawa couplings in the MSSM Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume (down) 02 Issue 2 Pages 016 - 35pp  
  Keywords Supersymmetric Standard Model; B-Physics  
  Abstract We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive the necessary and sufficient conditions for a linearly-independent basis of matrices related to the completeness of the internal [SU(3) circle times U(1)](5) flavour space. In a second step, we calculate the effective Yukawa couplings that are enhanced at large values of tan beta for general soft supersymmetry-breaking mass parameters. We highlight the contributions due to non-universal terms in the flavour decompositions of the sfermion mass matrices. We present numerical examples illustrating how such terms are induced by renormalization-group evolution starting from universal input boundary conditions, and demonstrate their importance for the flavour-violating effective Yukawa couplings of quarks.  
  Address [Ellis, John] CERN, Div Theory, CH-1211 Geneva 23, Switzerland, Email: John.Ellis@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000275223100016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 482  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva