|   | 
Details
   web
Records
Author Garani, R.; Palomares-Ruiz, S.
Title Evaporation of dark matter from celestial bodies Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 05 Issue 5 Pages 042 - 53pp
Keywords dark matter detectors; dark matter theory; massive stars; stars
Abstract Scatterings of galactic dark matter (DM) particles with the constituents of celestial bodies could result in their accumulation within these objects. Nevertheless, the finite temperature of the medium sets a minimum mass, the evaporation mass, that DM particles must have in order to remain trapped. DM particles below this mass are very likely to scatter to speeds higher than the escape velocity, so they would be kicked out of the capturing object and escape. Here, we compute the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium, spanning the mass range [10(-)(10) – 10(2)] M-circle dot, for constant scattering cross sections and s-wave annihilations. We illustrate the critical importance of the exponential tail of the evaporation rate, which has not always been appreciated in recent literature, and obtain a robust result: for the geometric value of the scattering cross section and for interactions with nucleons, at the local galactic position, the DM evaporation mass for all spherical celestial bodies in hydrostatic equilibrium is approximately given by E-c/T-chi similar to 30, where E-c is the escape energy of DM particles at the core of the object and T-chi is their temperature. In that case, the minimum value of the DM evaporation mass is obtained for super-Jupiters and brown dwarfs, m(ev)(ap) similar or equal to 0.7 GeV. For other values of the scattering cross section, the DM evaporation mass only varies by a factor smaller than three within the range 10(-41) cm(2) <= sigma(p) <= 10(-31) cm(2), where sigma(p) is the spin-independent DM-nucleon scattering cross section. Its dependence on parameters such as the galactic DM density and velocity, or the scattering and annihilation cross sections is only logarithmic, and details on the density and temperature profiles of celestial bodies have also a small impact.
Address [Garani, Raghuveer] INFN Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy, Email: garani@fi.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000804029400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5243
Permanent link to this record
 

 
Author Marco-Hernandez, R.
Title Development of a beam test telescope based on the Alibava readout system Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 6 Issue Pages C01002 - 7pp
Keywords Particle tracking detectors; Data acquisition circuits; Front-end electronics for detector readout; Digital electronic circuits
Abstract A telescope for a beam test have been developed as a result of a collaboration among the University of Liverpool, Centro Nacional de Microelectronica (CNM) of Barcelona and Instituto de Fisica Corpuscular (IFIC) of Valencia. This system is intended to carry out both analogue charge collection and spatial resolution measurements with different types of microstrip or pixel silicon detectors in a beam test environment. The telescope has four XY measurement as well as trigger planes (XYT board) and it can accommodate up to twelve devices under test (DUT board). The DUT board uses two Beetle ASICs for the readout of chilled silicon detectors. The board could operate in a self-triggering mode. The board features a temperature sensor and it can be mounted on a rotary stage. A peltier element is used for cooling the DUT. Each XYT board measures the track space points using two silicon strip detectors connected to two Beetle ASICs. It can also trigger on the particle tracks in the beam test. The board includes a CPLD which allows for the synchronization of the trigger signal to a common clock frequency, delaying and implementing coincidence with other XYT boards. An Alibava mother board is used to read out and to control each XYT/DUT board from a common trigger signal and a common clock signal. The Alibava board has a TDC on board to have a time stamp of each trigger. The data collected by each Alibava board is sent to a master card by means of a local data/address bus following a custom digital protocol. The master board distributes the trigger, clock and reset signals. It also merges the data streams from up to sixteen Alibava boards. The board has also a test channel for testing in a standard mode a XYT or DUT board. This board is implemented with a Xilinx development board and a custom patch board. The master board is connected with the DAQ software via 100M Ethernet. Track based alignment software has also been developed for the data obtained with the DAQ software.
Address [Marco-Hernandez, R.; Alibava Collaboration] CSIC UV, Inst Fis Corpuscular, E-46980 Paterna, Valencia, Spain, Email: rmarco@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000291345600007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 644
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title The Pierre Auger Observatory scaler mode for the study of solar activity modulation of galactic cosmic rays Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 6 Issue Pages P01003 - 16pp
Keywords Cherenkov detectors; Large detector systems for particle and astroparticle physics; Particle detectors
Abstract Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000291345600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 646
Permanent link to this record
 

 
Author ATLAS Collaboration (Abat, E. et al); Bernabeu Verdu, J.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Garcia, C.; Gonzalez-Sevilla, S.; Higon-Rodriguez, E.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V.A.; Ruiz, A.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume (up) 6 Issue Pages P04001 - 40pp
Keywords Transition radiation detectors; Calorimeters; Large detector systems for particle and astroparticle physics; Particle tracking detectors (Solid-state detectors)
Abstract The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.
Address [Wheeler, S.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada, Email: stathes.paganis@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000294491300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 848
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Coleiro, A.; Colomer, M.; Gozzini, R.; Hernandez-Rey, J.J.; Illuminati, G.; Khan-Chowdhury, N.R.; Lotze, M.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 06 Issue 6 Pages 113 - 23pp
Keywords Neutrino Detectors and Telescopes (experiments); Oscillation
Abstract The ANTARES neutrino telescope has an energy threshold of a few tens of GeV. This allows to study the phenomenon of atmospheric muon neutrino disappearance due to neutrino oscillations. In a similar way, constraints on the 3+1 neutrino model, which foresees the existence of one sterile neutrino, can be inferred. Using data collected by the ANTARES neutrino telescope from 2007 to 2016, a new measurement of m 2 and (23) has been performed which is consistent with world best-fit values and constraints on the 3+1 neutrino model have been derived.
Address [Drouhin, D.; Ruiz, R. Gracia; Organokov, M.; Pradier, T.] Univ Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Email: salvadori@cppm.in2p3.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000472922700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4066
Permanent link to this record