|   | 
Details
   web
Records
Author Bonilla, C.; Lamprea, J.M.; Peinado, E.; Valle, J.W.F.
Title Flavour-symmetric type-II Dirac neutrino seesaw mechanism Type Journal Article
Year 2018 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume (up) 779 Issue Pages 257-261
Keywords Neutrino masses and mixing; Flavour physics
Abstract We propose a Standard Model extension with underlying A(4) flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the “golden” flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit[ 1] we derive restrictions on the oscillation parameters, such as a correlation between delta(CP) and m(nu lightest).
Address [Bonilla, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000429098900032 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3566
Permanent link to this record
 

 
Author Ludl, P.O.; Morisi, S.; Peinado, E.
Title The reactor mixing angle and CP violation with two texture zeros in the light of T2K Type Journal Article
Year 2012 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume (up) 857 Issue 3 Pages 411-423
Keywords
Abstract We reconsider the phenomenological implications of two texture zeros in symmetric neutrino mass matrices in the light of the recent T2K results for the reactor angle and the new global analysis which gives also best fit values for the Dirac CP phase delta. The most important results of the analysis are: Among the viable cases classified by Frampton etal, only A(1) and A(2) predict theta(13) to be different from zero at 3 sigma. Furthermore these two cases are compatible only with a normal mass spectrum in the allowed region for the reactor angle. At the best fit value A(1) and A(2) predict 0.024 >= sin(2)theta(13) >= 0.012 and 0.014 <= sin(2)theta(13) <= 0.032, respectively, where the bounds on the right and the left correspond to cos delta = -1 and cos delta = 1, respectively. The cases B-1, B-2, B-3 and B-4 predict nearly maximal CP violation, i.e. cos delta approximate to 0.
Address [Ludl, P. O.] Univ Vienna, Fac Phys, A-1090 Vienna, Austria, Email: patrick.ludl@univie.ac.at
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000300266100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 907
Permanent link to this record
 

 
Author Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.
Title Constraining neutrinoless double beta decay Type Journal Article
Year 2012 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume (up) 861 Issue 3 Pages 259-270
Keywords
Abstract A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.
Address [Dorame, L.; Morisi, S.; Peinado, E.; Valle, J. W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC,Edificio Inst Paterna, E-46071 Valencia, Spain, Email: dorame@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000304239200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1030
Permanent link to this record