|   | 
Details
   web
Records
Author Pasqualato, G. et al; Domingo-Pardo, C.; Gadea, A.
Title Shape evolution in even-mass 98-104Zr isotopes via lifetime measurements using the γ γ-coincidence technique Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume (up) 59 Issue 11 Pages 276 - 13pp
Keywords
Abstract The Zirconium (Z = 40) isotopic chain has attracted interest for more than four decades. The abrupt lowering of the energy of the first 2(+) state and the increase in the transition strength B(E2; 2(1)(+) -> 0(1)(+) ) going from Zr-98 to Zr-100 has been the first example of “quantum phase transition” in nuclear shapes, which has few equivalents in the nuclear chart. Although a multitude of experiments have been performed to measure nuclear properties related to nuclear shapes and collectivity in the region, none of the measured lifetimes were obtained using the Recoil Distance Doppler Shift method in the gamma gamma-coincidence mode where a gate on the direct feeding transition of the state of interest allows a strict control of systematical errors. This work reports the results of lifetime measurements for the first yrast excited states in Zr98-104 carried out to extract reduced transition probabilities. The new lifetime values in gamma gamma-coincidence and gamma-single mode are compared with the results of former experiments. Recent predictions of the Interacting Boson Model with Configuration Mixing, the Symmetry Conserving Configuration Mixing model based on the Hartree-Fock- Bogoliubov approach and the Monte Carlo Shell Model are presented and compared with the experimental data.
Address [Pasqualato, G.; Ljungvall, J.; Georgiev, G.; Korichi, A.; Ralet, D.; Verney, D.] Univ Paris Saclay, CNRS, IN2P3, IJCLab, Orsay, France, Email: giorgia.pasqualato.1@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001107209400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5852
Permanent link to this record
 

 
Author Barrientos, D.; Gonzalez, V.; Bellato, M.; Gadea, A.; Bazzacco, D.; Blasco, J.M.; Bortolato, D.; Egea, F.J.; Isocrate, R.; Pullia, A.; Rampazzo, G.; Sanchis, E.; Triossi, A.
Title Multiple Register Synchronization With a High-Speed Serial Link Using the Aurora Protocol Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume (up) 60 Issue 5 Pages 3521-3525
Keywords
Abstract In this work, the development and characterization of a multiple synchronous registers interface communicating with a high-speed serial link and using the Aurora protocol is presented. A detailed description of the developing process and the characterization methods and hardware test benches are also included. This interface will implement the slow control buses of the digitizer cards for the second generation of electronics for the Advanced GAmma Tracking Array (AGATA).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827700014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1612
Permanent link to this record
 

 
Author Egea, F.J. et al; Gadea, A.; Barrientos, D.; Huyuk, T.
Title Design and Test of a High-Speed Flash ADC Mezzanine Card for High-Resolution and Timing Performance in Nuclear Structure Experiments Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume (up) 60 Issue 5 Pages 3526-3531
Keywords
Abstract This work describes new electronics for the EX-OGAM2 (HP-Ge detector array) and NEDA (BC501A-based neutron detector array). A new digitizing card with high resolution has been designed for gamma-ray and neutron spectroscopy experiments. The higher bandwidth requirement of the NEDA signals, together with the necessity for accuracy, require a high sampling rate in order to preserve the shape for real-time Pulse Shape Analysis (PSA). The PSA is of paramount importance for the NEDA to discriminate between neutrons and gamma-ray signals. Both high resolution and high speed parameters are often difficult to achieve in a single electronic unit. These constraints, together with the need to build new digitizing electronics to improve performance and flexibility of signal analysis in nuclear physics experiments, led to the development a new FADC mezzanine card. In this work, the design and development are described, including the characterization procedure and the preliminary measurement results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1613
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T.
Title A New Front-End High-Resolution Sampling Board for the New-Generation Electronics of EXOGAM2 and NEDA Detectors Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume (up) 62 Issue 3 Pages 1056-1062
Keywords Acquisition in HP-Ge detectors; high-speed ADCs; low-noise electronics design
Abstract This paper presents the final design and results of the FADC Mezzanine for the EXOGAM (EXOtic GAMma array spectrometer) and NEDA (Neutron Detector Array) detectors. The measurements performed include those of studying the effective number of bits, the energy resolution using HP-Ge detectors, as well as timing histograms and discrimination performance. Finally, the conclusion shows how a common digitizing device has been integrated in the experimental environment of two very different detectors which combine both low-noise acquisition and fast sampling rates. Not only the integration fulfilled the expected specifications on both systems, but it also showed how a study of synergy between detectors could lead to the reduction of resources and time by applying a common strategy.
Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000356458000028 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2278
Permanent link to this record
 

 
Author Egea Canet, F.J. et al; Gadea, A.; Huyuk, T.
Title Digital Front-End Electronics for the Neutron Detector NEDA Type Journal Article
Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume (up) 62 Issue 3 Pages 1063-1069
Keywords Digital systems; front-end electronics; neutron detectors; neutron-gamma discrimination
Abstract This paper presents the design of the NEDA (Neutron Detector Array) electronics, a first attempt to involve the use of digital electronics in large neutron detector arrays. Starting from the front-end modules attached to the PMTs (PhotoMultiplier Tubes) and ending up with the data processing workstations, a comprehensive electronic system capable of dealing with the acquisition and pre-processing of the neutron array is detailed. Among the electronic modules required, we emphasize the front-end analog processing, the digitalization, digital pre-processing and communications firmware, as well as the integration of the GTS (Global Trigger and Synchronization) system, already used successfully in AGATA (Advanced Gamma Tracking Array). The NEDA array will be available for measurements in 2016.
Address [Egea Canet, F. J.; Gonzalez, V.; Sanchis, E.] Univ Valencia, Dept Elect Engn, Escola Tecn Super Engn, Valencia, Spain, Email: jaegea@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000356458000029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2279
Permanent link to this record