|   | 
Details
   web
Records
Author Escudero, M.; Mena, O.; Vincent, A.C.; Wilkinson, R.J.; Boehm, C.
Title Exploring dark matter microphysics with galaxy surveys Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 09 Issue 9 Pages 034 - 16pp
Keywords dark matter theory; galaxy surveys; cosmological parameters from CMBR
Abstract We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ACDM scenario. To quantify this statement, we focus on an extension of ACDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.
Address [Escudero, Miguel; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: miguel.Escudero@uv.s;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000365690000034 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2480
Permanent link to this record
 

 
Author Liem, S.; Bertone, G.; Calore, F.; Ruiz de Austri, R.; Tait, T.M.P.; Trotta, R.; Weniger, C.
Title Effective field theory of dark matter: a global analysis Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 09 Issue 9 Pages 077 - 22pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Effective field theories
Abstract We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.
Address [Liem, Sebastian; Bertone, Gianfranco; Calore, Francesca; Weniger, Christoph] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: sebastian.liem@uva.nl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000383545500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2864
Permanent link to this record
 

 
Author Fuentes-Martin, J.; Portoles, J.; Ruiz-Femenia, P.
Title Integrating out heavy particles with functional methods: a simplified framework Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 09 Issue 9 Pages 156 - 26pp
Keywords Effective field theories; Beyond Standard Model
Abstract We present a systematic procedure to obtain the one-loop low-energy effective Lagrangian resulting from integrating out the heavy fields of a given ultraviolet theory. We show that the matching coefficients are determined entirely by the hard region of the functional determinant involving the heavy fields. This represents an important simplification with respect the conventional matching approach, where the full and effective theory contributions have to be computed separately and a cancellation of the infrared divergent parts has to take place. We illustrate the method with a descriptive toy model and with an extension of the Standard Model with a heavy real scalar triplet. A comparison with other schemes that have been put forward recently is also provided.
Address [Fuentes-Martin, Javier; Portoles, Jorge] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, Apt Correus 22085, E-46071 Valencia, Spain, Email: Javier.Fuentes@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000391735900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2926
Permanent link to this record
 

 
Author Reig, M.; Valle, J.W.F.; Yamada, M.
Title Light majoron cold dark matter from topological defects and the formation of boson stars Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume (up) 09 Issue 9 Pages 029 - 25pp
Keywords Cosmic strings; domain walls; monopoles; particle physics – cosmology connection; cosmology of theories beyond the SM; cosmological neutrinos
Abstract We show that for a relatively light majoron (<< 100 eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.
Address [Reig, Mario; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000487690100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4154
Permanent link to this record
 

 
Author Murgui, C.; Peñuelas, A.; Jung, M.; Pich, A.
Title Global fit to b -> c tau nu transitions Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 09 Issue 9 Pages 103 - 45pp
Keywords Beyond Standard Model; Effective Field Theories
Abstract We perform a general model-independent analysis of b -> c tau(nu) over bar (tau) transitions, including measurements of R-D, R-D*, their q(2) differential distributions, the recently measured longitudinal D* polarization F-L(D)*, and constraints from the B-c -> tau(nu) over bar (tau) lifetime, each of which has significant impact on the fit. A global fit to a general set of Wilson coefficients of an effective low-energy Hamiltonian is presented, the solutions of which are interpreted in terms of hypothetical new-physics mediators. From the obtained results we predict selected b -> c tau(nu) over bar (tau) observables, such as the baryonic transition Lambda(b) -> Lambda(c)tau(nu) over bar (tau), the ratio R-J/psi, the forward-backward asymmetries A(FB)(D()*()), the tau polarization asymmetries P-tau(D()*()), and the longitudinal D* polarization fraction F-L(D)*. The latter shows presently a slight tension with any new-physics model, such that an improved measurement could have an important impact. We also discuss the potential change due the very recently announced preliminary R-D(*) measurement by the Belle collaboration.
Address [Murgui, Clara; Penuelas, Ana; Pich, Antonio] Univ Valencia, IFIC, Dept Fis Teor, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: Clara.Murgui@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000490861200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4177
Permanent link to this record
 

 
Author Bernal, N.; Donini, A.; Folgado, M.G.; Rius, N.
Title Kaluza-Klein FIMP dark matter in warped extra-dimensions Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 09 Issue 9 Pages 142 - 31pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract We study for the first time the case in which Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the standard model particles in an extra-dimensional Randall-Sundrum scenario. We assume that both the dark matter and the standard model are localized in the IR-brane and only interact via gravitational mediators, namely the graviton, the Kaluza-Klein gravitons and the radion. We found that in the early Universe DM could be generated via two main processes: the direct freeze-in and the sequential freeze-in. The regions where the observed DM relic abundance is produced are largely compatible with cosmological and collider bounds.
Address [Bernal, Nicolas] Univ Antonio Narino, Ctr Invest, Carrera 3 Este 47A-15, Bogota, Colombia, Email: nicolas.bernal@uan.edu.co;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000574609100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4552
Permanent link to this record
 

 
Author Centelles Chulia, S.; Doring, C.; Rodejohann, W.; Saldana-Salazar, U.J.
Title Natural axion model from flavour Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 09 Issue 9 Pages 137 - 29pp
Keywords Anomalies in Field and String Theories; Beyond Standard Model; Global Symmetries; Higgs Physics
Abstract We explore a common symmetrical origin for two long standing problems in particle physics: the strong CP and the fermion mass hierarchy problems. The Peccei-Quinn mechanism solves the former one with an anomalous global U(1)(PQ) symmetry. Here we investigate how this U(1)(PQ) could at the same time explain the fermion mass hierarchy. We work in the context of a four-Higgs-doublet model which explains all quark and charged fermion masses with natural, i.e. order 1, Yukawa couplings. Moreover, the axion of the model constitutes a viable dark matter candidate and neutrino masses are incorporated via the standard type-I seesaw mechanism. A simple extension of the model allows for Dirac neutrinos.
Address [Centelles Chulia, Salvador] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: salcen@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000574615500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4553
Permanent link to this record
 

 
Author Cosme, C.; Dutra, M.; Godfrey, S.; Gray, T.
Title Testing freeze-in with axial and vector Z ' bosons Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 09 Issue 9 Pages 056 - 27pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract The freeze-in production of Feebly Interacting Massive Particle (FIMP) dark matter in the early universe is an appealing alternative to the well-known – and constrained – Weakly Interacting Massive Particle (WIMP) paradigm. Although challenging, the phenomenology of FIMP dark matter has been receiving growing attention and is possible in a few scenarios. In this work, we contribute to this endeavor by considering a Z ' portal to fermionic dark matter, with the Z ' having both vector and axial couplings and a mass ranging from MeV up to PeV. We evaluate the bounds on both freeze-in and freeze-out from direct detection, atomic parity violation, leptonic anomalous magnetic moments, neutrino-electron scattering, collider, and beam dump experiments. We show that FIMPs can already be tested by most of these experiments in a complementary way, whereas WIMPs are especially viable in the Z ' low mass regime, in addition to the Z ' resonance region. We also discuss the role of the axial couplings of Z ' in our results. We therefore hope to motivate specific realizations of this model in the context of FIMPs, as well as searches for these elusive dark matter candidates.
Address [Cosme, Catarina; Dutra, Maira; Godfrey, Stephen; Gray, Taylor] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada, Email: catarina.cosme@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000695081900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4962
Permanent link to this record
 

 
Author Cottin, G.; Helo, J.C.; Hirsch, M.; Titov, A.; Wang, Z.S.
Title Heavy neutral leptons in effective field theory and the high-luminosity LHC Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 09 Issue 9 Pages 039 - 34pp
Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics
Abstract Heavy neutral leptons (HNLs) with masses around the electroweak scale are expected to be rather long-lived particles, as a result of the observed smallness of the active neutrino masses. In this work, we study long-lived HNLs in NRSMEFT, a Standard Model (SM) extension with singlet fermions to which we add non-renormalizable operators up to dimension-6. Operators which contain two HNLs can lead to a sizable enhancement of the production cross sections, compared to the minimal case where HNLs are produced only via their mixing with the SM neutrinos. We calculate the expected sensitivities for the ATLAS detector and the future far-detector experiments: AL3X, ANUBIS, CODEX-b, FASER, MATHUSLA, and MoEDAL-MAPP in this setup. The sensitive ranges of the HNL mass and of the active-heavy mixing angle are much larger than those in the minimal case. We study both, Dirac and Majorana, HNLs and discuss how the two cases actually differ phenomenologically, for HNL masses above roughly 100 GeV.
Address [Cottin, Giovanna] Univ Adolfo Ibanez, Fac Artes Liberales, Dept Ciencias, Diagonal Las Torres 2640, Santiago, Chile, Email: giovanna.cottin@uai.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000694840800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4970
Permanent link to this record
 

 
Author Reig, M.
Title The stochastic axiverse Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume (up) 09 Issue 9 Pages 207 - 40pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Compactification and String Models
Abstract In addition to spectacular signatures such as black hole superradiance and the rotation of CMB polarization, the plenitude of axions appearing in the string axiverse may have potentially dangerous implications. An example is the cosmological overproduction of relic axions and moduli by the misalignment mechanism, more pronounced in regions where the signals mentioned above may be observable, that is for large axion decay constant. In this work, we study the minimal requirements to soften this problem and show that the fundamental requirement is a long period of low-scale inflation. However, in this case, if the inflationary Hubble scale is lower than around O(100) eV, no relic DM axion is produced in the early Universe. Cosmological production of some axions may be activated, via the misalignment mechanism, if their potential minimum changes between inflation and today. As a particular example, we study in detail how the maximal-misalignment mechanism dilutes the effect of dangerous axions and allows the production of axion DM in a controlled way. In this case, the potential of the axion that realises the mechanism shifts by a factor increment theta = pi between the inflationary epoch and today, and the axion starts to oscillate from the top of its potential. We also show that axions with masses m(a) similar to O(1 – 100) H-0 realising the maximal-misalignment mechanism generically behave as dark energy with a decay constant that can take values well below the Planck scale, avoiding problems associated to super-Planckian scales. Finally, we briefly study the basic phenomenological implications of the mechanism and comment on the compatibility of this type of maximally-misaligned quintessence with the swampland criteria.
Address [Reig, Mario] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ifis.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000702371800004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4977
Permanent link to this record